x ਲਈ ਹਲ ਕਰੋ
x=\frac{2\sqrt{2}}{3}-1\approx -0.057190958
x=-\frac{2\sqrt{2}}{3}-1\approx -1.942809042
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
0=9\left(x^{2}+2x+1\right)-8
\left(x+1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
0=9x^{2}+18x+9-8
9 ਨੂੰ x^{2}+2x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
0=9x^{2}+18x+1
1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9 ਵਿੱਚੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ।
9x^{2}+18x+1=0
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
x=\frac{-18±\sqrt{18^{2}-4\times 9}}{2\times 9}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 9 ਨੂੰ a ਲਈ, 18 ਨੂੰ b ਲਈ, ਅਤੇ 1 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-18±\sqrt{324-4\times 9}}{2\times 9}
18 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-18±\sqrt{324-36}}{2\times 9}
-4 ਨੂੰ 9 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-18±\sqrt{288}}{2\times 9}
324 ਨੂੰ -36 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-18±12\sqrt{2}}{2\times 9}
288 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-18±12\sqrt{2}}{18}
2 ਨੂੰ 9 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{12\sqrt{2}-18}{18}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-18±12\sqrt{2}}{18} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -18 ਨੂੰ 12\sqrt{2} ਵਿੱਚ ਜੋੜੋ।
x=\frac{2\sqrt{2}}{3}-1
-18+12\sqrt{2} ਨੂੰ 18 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-12\sqrt{2}-18}{18}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-18±12\sqrt{2}}{18} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -18 ਵਿੱਚੋਂ 12\sqrt{2} ਨੂੰ ਘਟਾਓ।
x=-\frac{2\sqrt{2}}{3}-1
-18-12\sqrt{2} ਨੂੰ 18 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{2\sqrt{2}}{3}-1 x=-\frac{2\sqrt{2}}{3}-1
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
0=9\left(x^{2}+2x+1\right)-8
\left(x+1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
0=9x^{2}+18x+9-8
9 ਨੂੰ x^{2}+2x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
0=9x^{2}+18x+1
1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9 ਵਿੱਚੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ।
9x^{2}+18x+1=0
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
9x^{2}+18x=-1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
\frac{9x^{2}+18x}{9}=-\frac{1}{9}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 9 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{18}{9}x=-\frac{1}{9}
9 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 9 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+2x=-\frac{1}{9}
18 ਨੂੰ 9 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+2x+1^{2}=-\frac{1}{9}+1^{2}
2, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 1 ਨਿਕਲੇ। ਫੇਰ, 1 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+2x+1=-\frac{1}{9}+1
1 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}+2x+1=\frac{8}{9}
-\frac{1}{9} ਨੂੰ 1 ਵਿੱਚ ਜੋੜੋ।
\left(x+1\right)^{2}=\frac{8}{9}
ਫੈਕਟਰ x^{2}+2x+1। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{8}{9}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+1=\frac{2\sqrt{2}}{3} x+1=-\frac{2\sqrt{2}}{3}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{2\sqrt{2}}{3}-1 x=-\frac{2\sqrt{2}}{3}-1
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}