ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

a+b=-25 ab=-6\left(-25\right)=150
ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ -6x^{2}+ax+bx-25 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-150 -2,-75 -3,-50 -5,-30 -6,-25 -10,-15
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 150 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-150=-151 -2-75=-77 -3-50=-53 -5-30=-35 -6-25=-31 -10-15=-25
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-10 b=-15
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -25 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(-6x^{2}-10x\right)+\left(-15x-25\right)
-6x^{2}-25x-25 ਨੂੰ \left(-6x^{2}-10x\right)+\left(-15x-25\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
2x\left(-3x-5\right)+5\left(-3x-5\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 2x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 5 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(-3x-5\right)\left(2x+5\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ -3x-5 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
-6x^{2}-25x-25=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\left(-6\right)\left(-25\right)}}{2\left(-6\right)}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-25\right)±\sqrt{625-4\left(-6\right)\left(-25\right)}}{2\left(-6\right)}
-25 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-25\right)±\sqrt{625+24\left(-25\right)}}{2\left(-6\right)}
-4 ਨੂੰ -6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-25\right)±\sqrt{625-600}}{2\left(-6\right)}
24 ਨੂੰ -25 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-25\right)±\sqrt{25}}{2\left(-6\right)}
625 ਨੂੰ -600 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-25\right)±5}{2\left(-6\right)}
25 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{25±5}{2\left(-6\right)}
-25 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 25 ਹੈ।
x=\frac{25±5}{-12}
2 ਨੂੰ -6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{30}{-12}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{25±5}{-12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 25 ਨੂੰ 5 ਵਿੱਚ ਜੋੜੋ।
x=-\frac{5}{2}
6 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{30}{-12} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=\frac{20}{-12}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{25±5}{-12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 25 ਵਿੱਚੋਂ 5 ਨੂੰ ਘਟਾਓ।
x=-\frac{5}{3}
4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{20}{-12} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
-6x^{2}-25x-25=-6\left(x-\left(-\frac{5}{2}\right)\right)\left(x-\left(-\frac{5}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ -\frac{5}{2}ਅਤੇ x_{2} ਲਈ -\frac{5}{3} ਬਦਲ ਹੈ।
-6x^{2}-25x-25=-6\left(x+\frac{5}{2}\right)\left(x+\frac{5}{3}\right)
ਫਾਰਮ p-\left(-q\right) ਤੋਂ p+q ਤੱਕ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ।
-6x^{2}-25x-25=-6\times \frac{-2x-5}{-2}\left(x+\frac{5}{3}\right)
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{5}{2} ਨੂੰ x ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
-6x^{2}-25x-25=-6\times \frac{-2x-5}{-2}\times \frac{-3x-5}{-3}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{5}{3} ਨੂੰ x ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
-6x^{2}-25x-25=-6\times \frac{\left(-2x-5\right)\left(-3x-5\right)}{-2\left(-3\right)}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{-2x-5}{-2} ਟਾਈਮਸ \frac{-3x-5}{-3} ਨੂੰ ਗੁਣਾ ਕਰੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
-6x^{2}-25x-25=-6\times \frac{\left(-2x-5\right)\left(-3x-5\right)}{6}
-2 ਨੂੰ -3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
-6x^{2}-25x-25=-\left(-2x-5\right)\left(-3x-5\right)
-6 ਅਤੇ 6 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 6 ਨੂੰ ਰੱਦ ਕਰੋ।