ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
a ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

a+b=-3 ab=-4=-4
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ -4a^{2}+aa+ba+1 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,-4 2,-2
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, ਨੈਗੇਟਿਵ ਨੰਬਰ ਦੀ ਪਾਜ਼ੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -4 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1-4=-3 2-2=0
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=1 b=-4
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -3 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(-4a^{2}+a\right)+\left(-4a+1\right)
-4a^{2}-3a+1 ਨੂੰ \left(-4a^{2}+a\right)+\left(-4a+1\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
-a\left(4a-1\right)-\left(4a-1\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ -a ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -1 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(4a-1\right)\left(-a-1\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 4a-1 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
a=\frac{1}{4} a=-1
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, 4a-1=0 ਅਤੇ -a-1=0 ਨੂੰ ਹੱਲ ਕਰੋ।
-4a^{2}-3a+1=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
a=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)}}{2\left(-4\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -4 ਨੂੰ a ਲਈ, -3 ਨੂੰ b ਲਈ, ਅਤੇ 1 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
a=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)}}{2\left(-4\right)}
-3 ਦਾ ਵਰਗ ਕਰੋ।
a=\frac{-\left(-3\right)±\sqrt{9+16}}{2\left(-4\right)}
-4 ਨੂੰ -4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
a=\frac{-\left(-3\right)±\sqrt{25}}{2\left(-4\right)}
9 ਨੂੰ 16 ਵਿੱਚ ਜੋੜੋ।
a=\frac{-\left(-3\right)±5}{2\left(-4\right)}
25 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
a=\frac{3±5}{2\left(-4\right)}
-3 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 3 ਹੈ।
a=\frac{3±5}{-8}
2 ਨੂੰ -4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
a=\frac{8}{-8}
ਹੁਣ, ਸਮੀਕਰਨ a=\frac{3±5}{-8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 3 ਨੂੰ 5 ਵਿੱਚ ਜੋੜੋ।
a=-1
8 ਨੂੰ -8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
a=-\frac{2}{-8}
ਹੁਣ, ਸਮੀਕਰਨ a=\frac{3±5}{-8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 3 ਵਿੱਚੋਂ 5 ਨੂੰ ਘਟਾਓ।
a=\frac{1}{4}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-2}{-8} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
a=-1 a=\frac{1}{4}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
-4a^{2}-3a+1=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
-4a^{2}-3a+1-1=-1
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾਓ।
-4a^{2}-3a=-1
1 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{-4a^{2}-3a}{-4}=-\frac{1}{-4}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
a^{2}+\left(-\frac{3}{-4}\right)a=-\frac{1}{-4}
-4 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -4 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
a^{2}+\frac{3}{4}a=-\frac{1}{-4}
-3 ਨੂੰ -4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
a^{2}+\frac{3}{4}a=\frac{1}{4}
-1 ਨੂੰ -4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
a^{2}+\frac{3}{4}a+\left(\frac{3}{8}\right)^{2}=\frac{1}{4}+\left(\frac{3}{8}\right)^{2}
\frac{3}{4}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{3}{8} ਨਿਕਲੇ। ਫੇਰ, \frac{3}{8} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
a^{2}+\frac{3}{4}a+\frac{9}{64}=\frac{1}{4}+\frac{9}{64}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{3}{8} ਦਾ ਵਰਗ ਕੱਢੋ।
a^{2}+\frac{3}{4}a+\frac{9}{64}=\frac{25}{64}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{1}{4} ਨੂੰ \frac{9}{64} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(a+\frac{3}{8}\right)^{2}=\frac{25}{64}
ਫੈਕਟਰ a^{2}+\frac{3}{4}a+\frac{9}{64}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(a+\frac{3}{8}\right)^{2}}=\sqrt{\frac{25}{64}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
a+\frac{3}{8}=\frac{5}{8} a+\frac{3}{8}=-\frac{5}{8}
ਸਪਸ਼ਟ ਕਰੋ।
a=\frac{1}{4} a=-1
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{3}{8} ਨੂੰ ਘਟਾਓ।