x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=\frac{-1+\sqrt{3}i}{2}\approx -0.5+0.866025404i
x=\frac{-\sqrt{3}i-1}{2}\approx -0.5-0.866025404i
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-\left(x^{2}+x-2\right)=3
x-1 ਨੂੰ x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
-x^{2}-x+2=3
x^{2}+x-2 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-x^{2}-x+2-3=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3 ਨੂੰ ਘਟਾ ਦਿਓ।
-x^{2}-x-1=0
-1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਵਿੱਚੋਂ 3 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -1 ਨੂੰ a ਲਈ, -1 ਨੂੰ b ਲਈ, ਅਤੇ -1 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-1\right)±\sqrt{1+4\left(-1\right)}}{2\left(-1\right)}
-4 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-1\right)±\sqrt{1-4}}{2\left(-1\right)}
4 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-1\right)±\sqrt{-3}}{2\left(-1\right)}
1 ਨੂੰ -4 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-1\right)±\sqrt{3}i}{2\left(-1\right)}
-3 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{1±\sqrt{3}i}{2\left(-1\right)}
-1 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 1 ਹੈ।
x=\frac{1±\sqrt{3}i}{-2}
2 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{1+\sqrt{3}i}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{1±\sqrt{3}i}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 1 ਨੂੰ i\sqrt{3} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\sqrt{3}i-1}{2}
1+i\sqrt{3} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-\sqrt{3}i+1}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{1±\sqrt{3}i}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 1 ਵਿੱਚੋਂ i\sqrt{3} ਨੂੰ ਘਟਾਓ।
x=\frac{-1+\sqrt{3}i}{2}
1-i\sqrt{3} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
-\left(x^{2}+x-2\right)=3
x-1 ਨੂੰ x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
-x^{2}-x+2=3
x^{2}+x-2 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-x^{2}-x=3-2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
-x^{2}-x=1
1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{-x^{2}-x}{-1}=\frac{1}{-1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{1}{-1}\right)x=\frac{1}{-1}
-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+x=\frac{1}{-1}
-1 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+x=-1
1 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-1+\left(\frac{1}{2}\right)^{2}
1, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{2} ਨਿਕਲੇ। ਫੇਰ, \frac{1}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+x+\frac{1}{4}=-1+\frac{1}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{1}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+x+\frac{1}{4}=-\frac{3}{4}
-1 ਨੂੰ \frac{1}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x+\frac{1}{2}\right)^{2}=-\frac{3}{4}
ਫੈਕਟਰ x^{2}+x+\frac{1}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{1}{2}=\frac{\sqrt{3}i}{2} x+\frac{1}{2}=-\frac{\sqrt{3}i}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{1}{2} ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}