x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=\frac{i\sqrt{2\left(\sqrt{337}-13\right)}}{2}\approx 1.636697857i
x=-\frac{i\sqrt{2\left(\sqrt{337}-13\right)}}{2}\approx -0-1.636697857i
x = -\frac{\sqrt{2 {(\sqrt{337} + 13)}}}{2} \approx -3.959643908
x = \frac{\sqrt{2 {(\sqrt{337} + 13)}}}{2} \approx 3.959643908
x ਲਈ ਹਲ ਕਰੋ
x = -\frac{\sqrt{2 {(\sqrt{337} + 13)}}}{2} \approx -3.959643908
x = \frac{\sqrt{2 {(\sqrt{337} + 13)}}}{2} \approx 3.959643908
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(-x^{2}\right)x^{2}-13\left(-x^{2}\right)=-42
-x^{2} ਨੂੰ x^{2}-13 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\left(-x^{2}\right)x^{2}+13x^{2}=-42
13 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -13 ਅਤੇ -1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(-x^{2}\right)x^{2}+13x^{2}+42=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 42 ਜੋੜੋ।
-x^{4}+13x^{2}+42=0
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ। 4 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 2 ਨੂੰ ਜੋੜੋ।
-t^{2}+13t+42=0
t ਨੂੰ x^{2} ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
t=\frac{-13±\sqrt{13^{2}-4\left(-1\right)\times 42}}{-2}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ -1 ਨੂੰ a ਦੇ ਨਾਲ, 13 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ 42 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
t=\frac{-13±\sqrt{337}}{-2}
ਗਣਨਾਵਾਂ ਕਰੋ।
t=\frac{13-\sqrt{337}}{2} t=\frac{\sqrt{337}+13}{2}
t=\frac{-13±\sqrt{337}}{-2} ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
x=-i\sqrt{-\frac{13-\sqrt{337}}{2}} x=i\sqrt{-\frac{13-\sqrt{337}}{2}} x=-\sqrt{\frac{\sqrt{337}+13}{2}} x=\sqrt{\frac{\sqrt{337}+13}{2}}
ਕਿਉਂਕਿ x=t^{2} ਹੈ, ਹਰ t ਲਈ x=±\sqrt{t} ਦਾ ਮੁਲਾਂਕਣ ਕਰਕੇ ਹੱਲ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।
\left(-x^{2}\right)x^{2}-13\left(-x^{2}\right)=-42
-x^{2} ਨੂੰ x^{2}-13 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\left(-x^{2}\right)x^{2}+13x^{2}=-42
13 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -13 ਅਤੇ -1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(-x^{2}\right)x^{2}+13x^{2}+42=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 42 ਜੋੜੋ।
-x^{4}+13x^{2}+42=0
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ। 4 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 2 ਨੂੰ ਜੋੜੋ।
-t^{2}+13t+42=0
t ਨੂੰ x^{2} ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
t=\frac{-13±\sqrt{13^{2}-4\left(-1\right)\times 42}}{-2}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ -1 ਨੂੰ a ਦੇ ਨਾਲ, 13 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ 42 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
t=\frac{-13±\sqrt{337}}{-2}
ਗਣਨਾਵਾਂ ਕਰੋ।
t=\frac{13-\sqrt{337}}{2} t=\frac{\sqrt{337}+13}{2}
t=\frac{-13±\sqrt{337}}{-2} ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
x=\frac{\sqrt{2\sqrt{337}+26}}{2} x=-\frac{\sqrt{2\sqrt{337}+26}}{2}
ਕਿਉਂਕਿ x=t^{2} ਹੈ, ਪਾਜ਼ੇਟਿਵ t ਲਈ x=±\sqrt{t} ਦਾ ਮੁਲਾਂਕਣ ਕਰਕੇ ਹੱਲ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}