m ਲਈ ਹਲ ਕਰੋ
m=2\sqrt{6}-5\approx -0.101020514
m=-2\sqrt{6}-5\approx -9.898979486
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-m^{2}-10m-1=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
m=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -1 ਨੂੰ a ਲਈ, -10 ਨੂੰ b ਲਈ, ਅਤੇ -1 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
m=\frac{-\left(-10\right)±\sqrt{100-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
-10 ਦਾ ਵਰਗ ਕਰੋ।
m=\frac{-\left(-10\right)±\sqrt{100+4\left(-1\right)}}{2\left(-1\right)}
-4 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
m=\frac{-\left(-10\right)±\sqrt{100-4}}{2\left(-1\right)}
4 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
m=\frac{-\left(-10\right)±\sqrt{96}}{2\left(-1\right)}
100 ਨੂੰ -4 ਵਿੱਚ ਜੋੜੋ।
m=\frac{-\left(-10\right)±4\sqrt{6}}{2\left(-1\right)}
96 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
m=\frac{10±4\sqrt{6}}{2\left(-1\right)}
-10 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 10 ਹੈ।
m=\frac{10±4\sqrt{6}}{-2}
2 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
m=\frac{4\sqrt{6}+10}{-2}
ਹੁਣ, ਸਮੀਕਰਨ m=\frac{10±4\sqrt{6}}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 10 ਨੂੰ 4\sqrt{6} ਵਿੱਚ ਜੋੜੋ।
m=-2\sqrt{6}-5
10+4\sqrt{6} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
m=\frac{10-4\sqrt{6}}{-2}
ਹੁਣ, ਸਮੀਕਰਨ m=\frac{10±4\sqrt{6}}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 10 ਵਿੱਚੋਂ 4\sqrt{6} ਨੂੰ ਘਟਾਓ।
m=2\sqrt{6}-5
10-4\sqrt{6} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
m=-2\sqrt{6}-5 m=2\sqrt{6}-5
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
-m^{2}-10m-1=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
-m^{2}-10m-1-\left(-1\right)=-\left(-1\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 1 ਨੂੰ ਜੋੜੋ।
-m^{2}-10m=-\left(-1\right)
-1 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
-m^{2}-10m=1
0 ਵਿੱਚੋਂ -1 ਨੂੰ ਘਟਾਓ।
\frac{-m^{2}-10m}{-1}=\frac{1}{-1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
m^{2}+\left(-\frac{10}{-1}\right)m=\frac{1}{-1}
-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
m^{2}+10m=\frac{1}{-1}
-10 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
m^{2}+10m=-1
1 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
m^{2}+10m+5^{2}=-1+5^{2}
10, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 5 ਨਿਕਲੇ। ਫੇਰ, 5 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
m^{2}+10m+25=-1+25
5 ਦਾ ਵਰਗ ਕਰੋ।
m^{2}+10m+25=24
-1 ਨੂੰ 25 ਵਿੱਚ ਜੋੜੋ।
\left(m+5\right)^{2}=24
ਫੈਕਟਰ m^{2}+10m+25। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(m+5\right)^{2}}=\sqrt{24}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
m+5=2\sqrt{6} m+5=-2\sqrt{6}
ਸਪਸ਼ਟ ਕਰੋ।
m=2\sqrt{6}-5 m=-2\sqrt{6}-5
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5 ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}