x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=1+4\sqrt{5}i\approx 1+8.94427191i
x=-4\sqrt{5}i+1\approx 1-8.94427191i
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-6x^{2}+12x-486=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-12±\sqrt{12^{2}-4\left(-6\right)\left(-486\right)}}{2\left(-6\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -6 ਨੂੰ a ਲਈ, 12 ਨੂੰ b ਲਈ, ਅਤੇ -486 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-12±\sqrt{144-4\left(-6\right)\left(-486\right)}}{2\left(-6\right)}
12 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-12±\sqrt{144+24\left(-486\right)}}{2\left(-6\right)}
-4 ਨੂੰ -6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-12±\sqrt{144-11664}}{2\left(-6\right)}
24 ਨੂੰ -486 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-12±\sqrt{-11520}}{2\left(-6\right)}
144 ਨੂੰ -11664 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-12±48\sqrt{5}i}{2\left(-6\right)}
-11520 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-12±48\sqrt{5}i}{-12}
2 ਨੂੰ -6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-12+48\sqrt{5}i}{-12}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-12±48\sqrt{5}i}{-12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -12 ਨੂੰ 48i\sqrt{5} ਵਿੱਚ ਜੋੜੋ।
x=-4\sqrt{5}i+1
-12+48i\sqrt{5} ਨੂੰ -12 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-48\sqrt{5}i-12}{-12}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-12±48\sqrt{5}i}{-12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -12 ਵਿੱਚੋਂ 48i\sqrt{5} ਨੂੰ ਘਟਾਓ।
x=1+4\sqrt{5}i
-12-48i\sqrt{5} ਨੂੰ -12 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-4\sqrt{5}i+1 x=1+4\sqrt{5}i
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
-6x^{2}+12x-486=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
-6x^{2}+12x-486-\left(-486\right)=-\left(-486\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 486 ਨੂੰ ਜੋੜੋ।
-6x^{2}+12x=-\left(-486\right)
-486 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
-6x^{2}+12x=486
0 ਵਿੱਚੋਂ -486 ਨੂੰ ਘਟਾਓ।
\frac{-6x^{2}+12x}{-6}=\frac{486}{-6}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -6 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{12}{-6}x=\frac{486}{-6}
-6 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -6 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-2x=\frac{486}{-6}
12 ਨੂੰ -6 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-2x=-81
486 ਨੂੰ -6 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-2x+1=-81+1
-2, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -1 ਨਿਕਲੇ। ਫੇਰ, -1 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-2x+1=-80
-81 ਨੂੰ 1 ਵਿੱਚ ਜੋੜੋ।
\left(x-1\right)^{2}=-80
ਫੈਕਟਰ x^{2}-2x+1। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-1\right)^{2}}=\sqrt{-80}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-1=4\sqrt{5}i x-1=-4\sqrt{5}i
ਸਪਸ਼ਟ ਕਰੋ।
x=1+4\sqrt{5}i x=-4\sqrt{5}i+1
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 1 ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}