ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

p+q=1 pq=-6\times 12=-72
ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ -6b^{2}+pb+qb+12 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। p ਅਤੇ q ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
ਕਿਉਂਕਿ pq ਨੈਗੇਟਿਵ ਹੈ, p ਅਤੇ q ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ p+q ਪਾਜ਼ੇਟਿਵ ਹੈ, ਪਾਜ਼ੇਟਿਵ ਨੰਬਰ ਦੀ ਨੈਗੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -72 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
p=9 q=-8
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 1 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(-6b^{2}+9b\right)+\left(-8b+12\right)
-6b^{2}+b+12 ਨੂੰ \left(-6b^{2}+9b\right)+\left(-8b+12\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
-3b\left(2b-3\right)-4\left(2b-3\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ -3b ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -4 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(2b-3\right)\left(-3b-4\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 2b-3 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
-6b^{2}+b+12=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
b=\frac{-1±\sqrt{1^{2}-4\left(-6\right)\times 12}}{2\left(-6\right)}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
b=\frac{-1±\sqrt{1-4\left(-6\right)\times 12}}{2\left(-6\right)}
1 ਦਾ ਵਰਗ ਕਰੋ।
b=\frac{-1±\sqrt{1+24\times 12}}{2\left(-6\right)}
-4 ਨੂੰ -6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
b=\frac{-1±\sqrt{1+288}}{2\left(-6\right)}
24 ਨੂੰ 12 ਵਾਰ ਗੁਣਾ ਕਰੋ।
b=\frac{-1±\sqrt{289}}{2\left(-6\right)}
1 ਨੂੰ 288 ਵਿੱਚ ਜੋੜੋ।
b=\frac{-1±17}{2\left(-6\right)}
289 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
b=\frac{-1±17}{-12}
2 ਨੂੰ -6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
b=\frac{16}{-12}
ਹੁਣ, ਸਮੀਕਰਨ b=\frac{-1±17}{-12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -1 ਨੂੰ 17 ਵਿੱਚ ਜੋੜੋ।
b=-\frac{4}{3}
4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{16}{-12} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
b=-\frac{18}{-12}
ਹੁਣ, ਸਮੀਕਰਨ b=\frac{-1±17}{-12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -1 ਵਿੱਚੋਂ 17 ਨੂੰ ਘਟਾਓ।
b=\frac{3}{2}
6 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-18}{-12} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
-6b^{2}+b+12=-6\left(b-\left(-\frac{4}{3}\right)\right)\left(b-\frac{3}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ -\frac{4}{3}ਅਤੇ x_{2} ਲਈ \frac{3}{2} ਬਦਲ ਹੈ।
-6b^{2}+b+12=-6\left(b+\frac{4}{3}\right)\left(b-\frac{3}{2}\right)
ਫਾਰਮ p-\left(-q\right) ਤੋਂ p+q ਤੱਕ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ।
-6b^{2}+b+12=-6\times \frac{-3b-4}{-3}\left(b-\frac{3}{2}\right)
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{4}{3} ਨੂੰ b ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
-6b^{2}+b+12=-6\times \frac{-3b-4}{-3}\times \frac{-2b+3}{-2}
ਸਾਂਝਾ ਡੀਨੋਮਿਨੇਟਰ ਕੱਢ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਘਟਾ ਕੇ b ਵਿੱਚੋਂ \frac{3}{2} ਨੂੰ ਘਟਾ ਦਿਓ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
-6b^{2}+b+12=-6\times \frac{\left(-3b-4\right)\left(-2b+3\right)}{-3\left(-2\right)}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{-3b-4}{-3} ਟਾਈਮਸ \frac{-2b+3}{-2} ਨੂੰ ਗੁਣਾ ਕਰੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
-6b^{2}+b+12=-6\times \frac{\left(-3b-4\right)\left(-2b+3\right)}{6}
-3 ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
-6b^{2}+b+12=-\left(-3b-4\right)\left(-2b+3\right)
-6 ਅਤੇ 6 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 6 ਨੂੰ ਰੱਦ ਕਰੋ।