ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

-a^{2}-20a-100
ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖਣ ਲਈ ਇਸ ਨੂੰ ਦੁਬਾਰਾ-ਵਿਵਸਥਿਤ ਕਰੋ। ਸੰਖਿਆਵਾਂ ਨੂੰ ਸਭ ਤੋਂ ਵੱਡੀ ਤੋਂ ਸਭ ਤੋਂ ਛੋਟੀ ਪਾਵਰ ਦੀ ਤਰਤੀਬ ਵਿੱਚ ਲਗਾਓ।
p+q=-20 pq=-\left(-100\right)=100
ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ -a^{2}+pa+qa-100 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। p ਅਤੇ q ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-100 -2,-50 -4,-25 -5,-20 -10,-10
ਕਿਉਂਕਿ pq ਪਾਜ਼ੇਟਿਵ ਹੈ, p ਅਤੇ q ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ p+q ਨੈਗੇਟਿਵ ਹੈ, p ਅਤੇ q ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 100 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-100=-101 -2-50=-52 -4-25=-29 -5-20=-25 -10-10=-20
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
p=-10 q=-10
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -20 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(-a^{2}-10a\right)+\left(-10a-100\right)
-a^{2}-20a-100 ਨੂੰ \left(-a^{2}-10a\right)+\left(-10a-100\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
-a\left(a+10\right)-10\left(a+10\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ -a ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -10 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(a+10\right)\left(-a-10\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ a+10 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
-a^{2}-20a-100=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
a=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\left(-1\right)\left(-100\right)}}{2\left(-1\right)}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
a=\frac{-\left(-20\right)±\sqrt{400-4\left(-1\right)\left(-100\right)}}{2\left(-1\right)}
-20 ਦਾ ਵਰਗ ਕਰੋ।
a=\frac{-\left(-20\right)±\sqrt{400+4\left(-100\right)}}{2\left(-1\right)}
-4 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
a=\frac{-\left(-20\right)±\sqrt{400-400}}{2\left(-1\right)}
4 ਨੂੰ -100 ਵਾਰ ਗੁਣਾ ਕਰੋ।
a=\frac{-\left(-20\right)±\sqrt{0}}{2\left(-1\right)}
400 ਨੂੰ -400 ਵਿੱਚ ਜੋੜੋ।
a=\frac{-\left(-20\right)±0}{2\left(-1\right)}
0 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
a=\frac{20±0}{2\left(-1\right)}
-20 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 20 ਹੈ।
a=\frac{20±0}{-2}
2 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
-a^{2}-20a-100=-\left(a-\left(-10\right)\right)\left(a-\left(-10\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ -10ਅਤੇ x_{2} ਲਈ -10 ਬਦਲ ਹੈ।
-a^{2}-20a-100=-\left(a+10\right)\left(a+10\right)
ਫਾਰਮ p-\left(-q\right) ਤੋਂ p+q ਤੱਕ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ।