t ਲਈ ਹਲ ਕਰੋ
t=1
t=3
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-16t^{2}+64t+80-128=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 128 ਨੂੰ ਘਟਾ ਦਿਓ।
-16t^{2}+64t-48=0
-48 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 80 ਵਿੱਚੋਂ 128 ਨੂੰ ਘਟਾ ਦਿਓ।
-t^{2}+4t-3=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 16 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
a+b=4 ab=-\left(-3\right)=3
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ -t^{2}+at+bt-3 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
a=3 b=1
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਸਿਰਫ਼ ਅਜਿਹਾ ਜੋੜਾ ਹੀ ਸਿਸਟਮ ਹੱਲ ਹੁੰਦਾ ਹੈ।
\left(-t^{2}+3t\right)+\left(t-3\right)
-t^{2}+4t-3 ਨੂੰ \left(-t^{2}+3t\right)+\left(t-3\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
-t\left(t-3\right)+t-3
-t^{2}+3t ਵਿੱਚੋਂ -t ਫੈਕਟਰ ਕੱਢੋ।
\left(t-3\right)\left(-t+1\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ t-3 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
t=3 t=1
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, t-3=0 ਅਤੇ -t+1=0 ਨੂੰ ਹੱਲ ਕਰੋ।
-16t^{2}+64t+80=128
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
-16t^{2}+64t+80-128=128-128
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 128 ਨੂੰ ਘਟਾਓ।
-16t^{2}+64t+80-128=0
128 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
-16t^{2}+64t-48=0
80 ਵਿੱਚੋਂ 128 ਨੂੰ ਘਟਾਓ।
t=\frac{-64±\sqrt{64^{2}-4\left(-16\right)\left(-48\right)}}{2\left(-16\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -16 ਨੂੰ a ਲਈ, 64 ਨੂੰ b ਲਈ, ਅਤੇ -48 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
t=\frac{-64±\sqrt{4096-4\left(-16\right)\left(-48\right)}}{2\left(-16\right)}
64 ਦਾ ਵਰਗ ਕਰੋ।
t=\frac{-64±\sqrt{4096+64\left(-48\right)}}{2\left(-16\right)}
-4 ਨੂੰ -16 ਵਾਰ ਗੁਣਾ ਕਰੋ।
t=\frac{-64±\sqrt{4096-3072}}{2\left(-16\right)}
64 ਨੂੰ -48 ਵਾਰ ਗੁਣਾ ਕਰੋ।
t=\frac{-64±\sqrt{1024}}{2\left(-16\right)}
4096 ਨੂੰ -3072 ਵਿੱਚ ਜੋੜੋ।
t=\frac{-64±32}{2\left(-16\right)}
1024 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
t=\frac{-64±32}{-32}
2 ਨੂੰ -16 ਵਾਰ ਗੁਣਾ ਕਰੋ।
t=-\frac{32}{-32}
ਹੁਣ, ਸਮੀਕਰਨ t=\frac{-64±32}{-32} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -64 ਨੂੰ 32 ਵਿੱਚ ਜੋੜੋ।
t=1
-32 ਨੂੰ -32 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t=-\frac{96}{-32}
ਹੁਣ, ਸਮੀਕਰਨ t=\frac{-64±32}{-32} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -64 ਵਿੱਚੋਂ 32 ਨੂੰ ਘਟਾਓ।
t=3
-96 ਨੂੰ -32 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t=1 t=3
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
-16t^{2}+64t+80=128
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
-16t^{2}+64t+80-80=128-80
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 80 ਨੂੰ ਘਟਾਓ।
-16t^{2}+64t=128-80
80 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
-16t^{2}+64t=48
128 ਵਿੱਚੋਂ 80 ਨੂੰ ਘਟਾਓ।
\frac{-16t^{2}+64t}{-16}=\frac{48}{-16}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -16 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
t^{2}+\frac{64}{-16}t=\frac{48}{-16}
-16 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -16 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
t^{2}-4t=\frac{48}{-16}
64 ਨੂੰ -16 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t^{2}-4t=-3
48 ਨੂੰ -16 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t^{2}-4t+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
-4, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -2 ਨਿਕਲੇ। ਫੇਰ, -2 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
t^{2}-4t+4=-3+4
-2 ਦਾ ਵਰਗ ਕਰੋ।
t^{2}-4t+4=1
-3 ਨੂੰ 4 ਵਿੱਚ ਜੋੜੋ।
\left(t-2\right)^{2}=1
ਫੈਕਟਰ t^{2}-4t+4। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(t-2\right)^{2}}=\sqrt{1}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
t-2=1 t-2=-1
ਸਪਸ਼ਟ ਕਰੋ।
t=3 t=1
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2 ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}