ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

-10x^{2}\times 2-10xx=3x
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
-10x^{2}\times 2-10x^{2}=3x
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
-20x^{2}-10x^{2}=3x
-20 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -10 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
-30x^{2}=3x
-30x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -20x^{2} ਅਤੇ -10x^{2} ਨੂੰ ਮਿਲਾਓ।
-30x^{2}-3x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3x ਨੂੰ ਘਟਾ ਦਿਓ।
x\left(-30x-3\right)=0
x ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
x=0 x=-\frac{1}{10}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x=0 ਅਤੇ -30x-3=0 ਨੂੰ ਹੱਲ ਕਰੋ।
-10x^{2}\times 2-10xx=3x
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
-10x^{2}\times 2-10x^{2}=3x
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
-20x^{2}-10x^{2}=3x
-20 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -10 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
-30x^{2}=3x
-30x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -20x^{2} ਅਤੇ -10x^{2} ਨੂੰ ਮਿਲਾਓ।
-30x^{2}-3x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3x ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2\left(-30\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -30 ਨੂੰ a ਲਈ, -3 ਨੂੰ b ਲਈ, ਅਤੇ 0 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-3\right)±3}{2\left(-30\right)}
\left(-3\right)^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{3±3}{2\left(-30\right)}
-3 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 3 ਹੈ।
x=\frac{3±3}{-60}
2 ਨੂੰ -30 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{6}{-60}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{3±3}{-60} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 3 ਨੂੰ 3 ਵਿੱਚ ਜੋੜੋ।
x=-\frac{1}{10}
6 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{6}{-60} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=\frac{0}{-60}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{3±3}{-60} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 3 ਵਿੱਚੋਂ 3 ਨੂੰ ਘਟਾਓ।
x=0
0 ਨੂੰ -60 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{1}{10} x=0
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
-10x^{2}\times 2-10xx=3x
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
-10x^{2}\times 2-10x^{2}=3x
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
-20x^{2}-10x^{2}=3x
-20 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -10 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
-30x^{2}=3x
-30x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -20x^{2} ਅਤੇ -10x^{2} ਨੂੰ ਮਿਲਾਓ।
-30x^{2}-3x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3x ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{-30x^{2}-3x}{-30}=\frac{0}{-30}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -30 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{3}{-30}\right)x=\frac{0}{-30}
-30 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -30 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{1}{10}x=\frac{0}{-30}
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-3}{-30} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{1}{10}x=0
0 ਨੂੰ -30 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+\frac{1}{10}x+\left(\frac{1}{20}\right)^{2}=\left(\frac{1}{20}\right)^{2}
\frac{1}{10}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{20} ਨਿਕਲੇ। ਫੇਰ, \frac{1}{20} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{1}{10}x+\frac{1}{400}=\frac{1}{400}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{1}{20} ਦਾ ਵਰਗ ਕੱਢੋ।
\left(x+\frac{1}{20}\right)^{2}=\frac{1}{400}
ਫੈਕਟਰ x^{2}+\frac{1}{10}x+\frac{1}{400}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{1}{20}\right)^{2}}=\sqrt{\frac{1}{400}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{1}{20}=\frac{1}{20} x+\frac{1}{20}=-\frac{1}{20}
ਸਪਸ਼ਟ ਕਰੋ।
x=0 x=-\frac{1}{10}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{1}{20} ਨੂੰ ਘਟਾਓ।