x ਲਈ ਹਲ ਕਰੋ
x=8
x=-8
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-5x^{2}=-321+1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 1 ਜੋੜੋ।
-5x^{2}=-320
-320 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -321 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
x^{2}=\frac{-320}{-5}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -5 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}=64
-320 ਨੂੰ -5 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 64 ਨਿਕਲੇ।
x=8 x=-8
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
-1-5x^{2}+321=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 321 ਜੋੜੋ।
320-5x^{2}=0
320 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ 321 ਨੂੰ ਜੋੜੋ।
-5x^{2}+320=0
ਇੱਕ x^{2} ਸੰਖਿਆ ਦੇ ਨਾਲ, ਪਰ ਜਿਸ ਦੇ ਨਾਲ ਕੋਈ x ਸੰਖਿਆ ਨਹੀਂ ਹੁੰਦੀ ਹੈ, ਅਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹਾਲੇ ਤੱਕ ਵਰਗਾਕਾਰ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੇ ਨਾਲ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਇੱਕ ਵਾਰ ਇਹਨਾਂ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ: ax^{2}+bx+c=0 ਵਿੱਚ ਪਾ ਦਿੱਤਾ ਜਾਵੇ।
x=\frac{0±\sqrt{0^{2}-4\left(-5\right)\times 320}}{2\left(-5\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -5 ਨੂੰ a ਲਈ, 0 ਨੂੰ b ਲਈ, ਅਤੇ 320 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{0±\sqrt{-4\left(-5\right)\times 320}}{2\left(-5\right)}
0 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{0±\sqrt{20\times 320}}{2\left(-5\right)}
-4 ਨੂੰ -5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±\sqrt{6400}}{2\left(-5\right)}
20 ਨੂੰ 320 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±80}{2\left(-5\right)}
6400 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{0±80}{-10}
2 ਨੂੰ -5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=-8
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±80}{-10} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 80 ਨੂੰ -10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=8
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±80}{-10} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -80 ਨੂੰ -10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-8 x=8
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}