ਮੁਲਾਂਕਣ ਕਰੋ
-\frac{11}{12}\approx -0.916666667
ਫੈਕਟਰ
-\frac{11}{12} = -0.9166666666666666
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-1-\left(-\frac{2}{4}+\frac{3}{4}+-2+\frac{5}{6}-\left(\frac{1}{3}-1\right)-\frac{1}{6}\right)-\frac{1}{3}
2 ਅਤੇ 4 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 4 ਹੈ। -\frac{1}{2} ਅਤੇ \frac{3}{4} ਨੂੰ 4 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
-1-\left(\frac{-2+3}{4}+-2+\frac{5}{6}-\left(\frac{1}{3}-1\right)-\frac{1}{6}\right)-\frac{1}{3}
ਕਿਉਂਕਿ -\frac{2}{4} ਅਤੇ \frac{3}{4} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
-1-\left(\frac{1}{4}+-2+\frac{5}{6}-\left(\frac{1}{3}-1\right)-\frac{1}{6}\right)-\frac{1}{3}
1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
-1-\left(\frac{1}{4}+-\frac{12}{6}+\frac{5}{6}-\left(\frac{1}{3}-1\right)-\frac{1}{6}\right)-\frac{1}{3}
-2 ਨੂੰ -\frac{12}{6} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
-1-\left(\frac{1}{4}+\frac{-12+5}{6}-\left(\frac{1}{3}-1\right)-\frac{1}{6}\right)-\frac{1}{3}
ਕਿਉਂਕਿ -\frac{12}{6} ਅਤੇ \frac{5}{6} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
-1-\left(\frac{1}{4}+-\frac{7}{6}-\left(\frac{1}{3}-1\right)-\frac{1}{6}\right)-\frac{1}{3}
-7 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -12 ਅਤੇ 5 ਨੂੰ ਜੋੜੋ।
-1-\left(\frac{1}{4}+-\frac{7}{6}-\left(\frac{1}{3}-\frac{3}{3}\right)-\frac{1}{6}\right)-\frac{1}{3}
1 ਨੂੰ \frac{3}{3} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
-1-\left(\frac{1}{4}-\frac{7}{6}-\frac{1-3}{3}-\frac{1}{6}\right)-\frac{1}{3}
ਕਿਉਂਕਿ \frac{1}{3} ਅਤੇ \frac{3}{3} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
-1-\left(\frac{1}{4}+-\frac{7}{6}-\left(-\frac{2}{3}\right)-\frac{1}{6}\right)-\frac{1}{3}
-2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਵਿੱਚੋਂ 3 ਨੂੰ ਘਟਾ ਦਿਓ।
-1-\left(\frac{1}{4}-\frac{7}{6}+\frac{2}{3}-\frac{1}{6}\right)-\frac{1}{3}
-\frac{2}{3} ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ \frac{2}{3} ਹੈ।
-1-\left(\frac{1}{4}-\frac{7}{6}+\frac{4}{6}-\frac{1}{6}\right)-\frac{1}{3}
6 ਅਤੇ 3 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 6 ਹੈ। -\frac{7}{6} ਅਤੇ \frac{2}{3} ਨੂੰ 6 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
-1-\left(\frac{1}{4}+\frac{-7+4}{6}-\frac{1}{6}\right)-\frac{1}{3}
ਕਿਉਂਕਿ -\frac{7}{6} ਅਤੇ \frac{4}{6} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
-1-\left(\frac{1}{4}+\frac{-3}{6}-\frac{1}{6}\right)-\frac{1}{3}
-3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -7 ਅਤੇ 4 ਨੂੰ ਜੋੜੋ।
-1-\left(\frac{1}{4}-\frac{1}{2}-\frac{1}{6}\right)-\frac{1}{3}
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-3}{6} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
-1-\left(\frac{1}{4}-\frac{2}{4}-\frac{1}{6}\right)-\frac{1}{3}
4 ਅਤੇ 2 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 4 ਹੈ। \frac{1}{4} ਅਤੇ \frac{1}{2} ਨੂੰ 4 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
-1-\left(\frac{1-2}{4}-\frac{1}{6}\right)-\frac{1}{3}
ਕਿਉਂਕਿ \frac{1}{4} ਅਤੇ \frac{2}{4} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
-1-\left(-\frac{1}{4}-\frac{1}{6}\right)-\frac{1}{3}
-1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
-1-\left(-\frac{3}{12}-\frac{2}{12}\right)-\frac{1}{3}
4 ਅਤੇ 6 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 12 ਹੈ। -\frac{1}{4} ਅਤੇ \frac{1}{6} ਨੂੰ 12 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
-1-\frac{-3-2}{12}-\frac{1}{3}
ਕਿਉਂਕਿ -\frac{3}{12} ਅਤੇ \frac{2}{12} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
-1-\left(-\frac{5}{12}\right)-\frac{1}{3}
-5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -3 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
-1+\frac{5}{12}-\frac{1}{3}
-\frac{5}{12} ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ \frac{5}{12} ਹੈ।
-\frac{12}{12}+\frac{5}{12}-\frac{1}{3}
-1 ਨੂੰ -\frac{12}{12} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
\frac{-12+5}{12}-\frac{1}{3}
ਕਿਉਂਕਿ -\frac{12}{12} ਅਤੇ \frac{5}{12} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
-\frac{7}{12}-\frac{1}{3}
-7 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -12 ਅਤੇ 5 ਨੂੰ ਜੋੜੋ।
-\frac{7}{12}-\frac{4}{12}
12 ਅਤੇ 3 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 12 ਹੈ। -\frac{7}{12} ਅਤੇ \frac{1}{3} ਨੂੰ 12 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{-7-4}{12}
ਕਿਉਂਕਿ -\frac{7}{12} ਅਤੇ \frac{4}{12} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
-\frac{11}{12}
-11 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -7 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}