h ਲਈ ਹਲ ਕਰੋ
h=-x+6-\frac{1}{x}
x\neq 0
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=\frac{-\sqrt{\left(h-8\right)\left(h-4\right)}-h+6}{2}
x=\frac{\sqrt{\left(h-8\right)\left(h-4\right)}-h+6}{2}
x ਲਈ ਹਲ ਕਰੋ
x=\frac{-\sqrt{\left(h-8\right)\left(h-4\right)}-h+6}{2}
x=\frac{\sqrt{\left(h-8\right)\left(h-4\right)}-h+6}{2}\text{, }h\leq 4\text{ or }h\geq 8
ਗ੍ਰਾਫ
ਕੁਇਜ਼
Algebra
5 ਪ੍ਰਸ਼ਨ ਇਸ ਵਰਗੇ ਹਨ:
- { \left(x-1 \right) }^{ 2 } + { x }^{ 2 } +2x+1+2x = { x }^{ 2 } +hx+1
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-\left(x^{2}-2x+1\right)+x^{2}+2x+1+2x=x^{2}+hx+1
\left(x-1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
-x^{2}+2x-1+x^{2}+2x+1+2x=x^{2}+hx+1
x^{2}-2x+1 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
2x-1+2x+1+2x=x^{2}+hx+1
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -x^{2} ਅਤੇ x^{2} ਨੂੰ ਮਿਲਾਓ।
4x-1+1+2x=x^{2}+hx+1
4x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x ਅਤੇ 2x ਨੂੰ ਮਿਲਾਓ।
4x+2x=x^{2}+hx+1
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
6x=x^{2}+hx+1
6x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x ਅਤੇ 2x ਨੂੰ ਮਿਲਾਓ।
x^{2}+hx+1=6x
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
hx+1=6x-x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
hx=6x-x^{2}-1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
xh=-x^{2}+6x-1
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{xh}{x}=\frac{-x^{2}+6x-1}{x}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
h=\frac{-x^{2}+6x-1}{x}
x ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ x ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
h=-x+6-\frac{1}{x}
6x-x^{2}-1 ਨੂੰ x ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}