b ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
\left\{\begin{matrix}b=\frac{7-3x}{l}\text{, }&l\neq 0\\b\in \mathrm{C}\text{, }&x=\frac{7}{3}\text{ and }l=0\end{matrix}\right.
l ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
\left\{\begin{matrix}l=\frac{7-3x}{b}\text{, }&b\neq 0\\l\in \mathrm{C}\text{, }&x=\frac{7}{3}\text{ and }b=0\end{matrix}\right.
b ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}b=\frac{7-3x}{l}\text{, }&l\neq 0\\b\in \mathrm{R}\text{, }&x=\frac{7}{3}\text{ and }l=0\end{matrix}\right.
l ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}l=\frac{7-3x}{b}\text{, }&b\neq 0\\l\in \mathrm{R}\text{, }&x=\frac{7}{3}\text{ and }b=0\end{matrix}\right.
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-bl=2\left(2x-3\right)-\left(x+1\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4, ਜੋ 4,2 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
-bl=4x-6-\left(x+1\right)
2 ਨੂੰ 2x-3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-bl=4x-6-x-1
x+1 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-bl=3x-6-1
3x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
-bl=3x-7
-7 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
\left(-l\right)b=3x-7
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(-l\right)b}{-l}=\frac{3x-7}{-l}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -l ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
b=\frac{3x-7}{-l}
-l ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -l ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
b=\frac{7-3x}{l}
-7+3x ਨੂੰ -l ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
-bl=2\left(2x-3\right)-\left(x+1\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4, ਜੋ 4,2 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
-bl=4x-6-\left(x+1\right)
2 ਨੂੰ 2x-3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-bl=4x-6-x-1
x+1 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-bl=3x-6-1
3x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
-bl=3x-7
-7 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
\left(-b\right)l=3x-7
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(-b\right)l}{-b}=\frac{3x-7}{-b}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -b ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
l=\frac{3x-7}{-b}
-b ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -b ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
l=\frac{7-3x}{b}
-7+3x ਨੂੰ -b ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
-bl=2\left(2x-3\right)-\left(x+1\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4, ਜੋ 4,2 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
-bl=4x-6-\left(x+1\right)
2 ਨੂੰ 2x-3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-bl=4x-6-x-1
x+1 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-bl=3x-6-1
3x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
-bl=3x-7
-7 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
\left(-l\right)b=3x-7
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(-l\right)b}{-l}=\frac{3x-7}{-l}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -l ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
b=\frac{3x-7}{-l}
-l ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -l ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
b=\frac{7-3x}{l}
3x-7 ਨੂੰ -l ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
-bl=2\left(2x-3\right)-\left(x+1\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4, ਜੋ 4,2 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
-bl=4x-6-\left(x+1\right)
2 ਨੂੰ 2x-3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-bl=4x-6-x-1
x+1 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-bl=3x-6-1
3x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
-bl=3x-7
-7 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
\left(-b\right)l=3x-7
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(-b\right)l}{-b}=\frac{3x-7}{-b}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -b ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
l=\frac{3x-7}{-b}
-b ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -b ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
l=\frac{7-3x}{b}
3x-7 ਨੂੰ -b ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}