ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਫੈਕਟਰ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{-\frac{5}{6}}{-3+\frac{7}{2}}-\frac{1}{2}\left(-3\right)\left(-\left(\frac{1}{2}-1\right)+1\right)
1 ਨੂੰ 1 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 1 ਨਿਕਲੇ।
\frac{-\frac{5}{6}}{-\frac{6}{2}+\frac{7}{2}}-\frac{1}{2}\left(-3\right)\left(-\left(\frac{1}{2}-1\right)+1\right)
-3 ਨੂੰ -\frac{6}{2} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
\frac{-\frac{5}{6}}{\frac{-6+7}{2}}-\frac{1}{2}\left(-3\right)\left(-\left(\frac{1}{2}-1\right)+1\right)
ਕਿਉਂਕਿ -\frac{6}{2} ਅਤੇ \frac{7}{2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{-\frac{5}{6}}{\frac{1}{2}}-\frac{1}{2}\left(-3\right)\left(-\left(\frac{1}{2}-1\right)+1\right)
1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6 ਅਤੇ 7 ਨੂੰ ਜੋੜੋ।
-\frac{5}{6}\times 2-\frac{1}{2}\left(-3\right)\left(-\left(\frac{1}{2}-1\right)+1\right)
-\frac{5}{6} ਨੂੰ \frac{1}{2} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ -\frac{5}{6}ਨੂੰ \frac{1}{2} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{-5\times 2}{6}-\frac{1}{2}\left(-3\right)\left(-\left(\frac{1}{2}-1\right)+1\right)
-\frac{5}{6}\times 2 ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{-10}{6}-\frac{1}{2}\left(-3\right)\left(-\left(\frac{1}{2}-1\right)+1\right)
-10 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -5 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
-\frac{5}{3}-\frac{1}{2}\left(-3\right)\left(-\left(\frac{1}{2}-1\right)+1\right)
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-10}{6} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
-\frac{5}{3}-\frac{-3}{2}\left(-\left(\frac{1}{2}-1\right)+1\right)
\frac{-3}{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{1}{2} ਅਤੇ -3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
-\frac{5}{3}-\left(-\frac{3}{2}\left(-\left(\frac{1}{2}-1\right)+1\right)\right)
ਨੈਗੇਟਿਵ ਚਿੰਨ੍ਹ ਨੂੰ ਬਾਹਰ ਕੱਢ ਕੇ, ਅੰਕ \frac{-3}{2} ਨੂੰ -\frac{3}{2} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
-\frac{5}{3}-\left(-\frac{3}{2}\left(-\left(\frac{1}{2}-\frac{2}{2}\right)+1\right)\right)
1 ਨੂੰ \frac{2}{2} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
-\frac{5}{3}-\left(-\frac{3}{2}\left(-\frac{1-2}{2}+1\right)\right)
ਕਿਉਂਕਿ \frac{1}{2} ਅਤੇ \frac{2}{2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
-\frac{5}{3}-\left(-\frac{3}{2}\left(-\left(-\frac{1}{2}\right)+1\right)\right)
-1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
-\frac{5}{3}-\left(-\frac{3}{2}\left(\frac{1}{2}+1\right)\right)
-\frac{1}{2} ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ \frac{1}{2} ਹੈ।
-\frac{5}{3}-\left(-\frac{3}{2}\left(\frac{1}{2}+\frac{2}{2}\right)\right)
1 ਨੂੰ \frac{2}{2} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
-\frac{5}{3}-\left(-\frac{3}{2}\times \frac{1+2}{2}\right)
ਕਿਉਂਕਿ \frac{1}{2} ਅਤੇ \frac{2}{2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
-\frac{5}{3}-\left(-\frac{3}{2}\times \frac{3}{2}\right)
3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 2 ਨੂੰ ਜੋੜੋ।
-\frac{5}{3}-\frac{-3\times 3}{2\times 2}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ -\frac{3}{2} ਟਾਈਮਸ \frac{3}{2} ਨੂੰ ਗੁਣਾ ਕਰੋ।
-\frac{5}{3}-\frac{-9}{4}
\frac{-3\times 3}{2\times 2} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
-\frac{5}{3}-\left(-\frac{9}{4}\right)
ਨੈਗੇਟਿਵ ਚਿੰਨ੍ਹ ਨੂੰ ਬਾਹਰ ਕੱਢ ਕੇ, ਅੰਕ \frac{-9}{4} ਨੂੰ -\frac{9}{4} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
-\frac{5}{3}+\frac{9}{4}
-\frac{9}{4} ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ \frac{9}{4} ਹੈ।
-\frac{20}{12}+\frac{27}{12}
3 ਅਤੇ 4 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 12 ਹੈ। -\frac{5}{3} ਅਤੇ \frac{9}{4} ਨੂੰ 12 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{-20+27}{12}
ਕਿਉਂਕਿ -\frac{20}{12} ਅਤੇ \frac{27}{12} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{7}{12}
7 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -20 ਅਤੇ 27 ਨੂੰ ਜੋੜੋ।