ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
t ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

-\frac{2}{3}t^{2}+3t=3
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
-\frac{2}{3}t^{2}+3t-3=3-3
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3 ਨੂੰ ਘਟਾਓ।
-\frac{2}{3}t^{2}+3t-3=0
3 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
t=\frac{-3±\sqrt{3^{2}-4\left(-\frac{2}{3}\right)\left(-3\right)}}{2\left(-\frac{2}{3}\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -\frac{2}{3} ਨੂੰ a ਲਈ, 3 ਨੂੰ b ਲਈ, ਅਤੇ -3 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
t=\frac{-3±\sqrt{9-4\left(-\frac{2}{3}\right)\left(-3\right)}}{2\left(-\frac{2}{3}\right)}
3 ਦਾ ਵਰਗ ਕਰੋ।
t=\frac{-3±\sqrt{9+\frac{8}{3}\left(-3\right)}}{2\left(-\frac{2}{3}\right)}
-4 ਨੂੰ -\frac{2}{3} ਵਾਰ ਗੁਣਾ ਕਰੋ।
t=\frac{-3±\sqrt{9-8}}{2\left(-\frac{2}{3}\right)}
\frac{8}{3} ਨੂੰ -3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
t=\frac{-3±\sqrt{1}}{2\left(-\frac{2}{3}\right)}
9 ਨੂੰ -8 ਵਿੱਚ ਜੋੜੋ।
t=\frac{-3±1}{2\left(-\frac{2}{3}\right)}
1 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
t=\frac{-3±1}{-\frac{4}{3}}
2 ਨੂੰ -\frac{2}{3} ਵਾਰ ਗੁਣਾ ਕਰੋ।
t=-\frac{2}{-\frac{4}{3}}
ਹੁਣ, ਸਮੀਕਰਨ t=\frac{-3±1}{-\frac{4}{3}} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -3 ਨੂੰ 1 ਵਿੱਚ ਜੋੜੋ।
t=\frac{3}{2}
-2 ਨੂੰ -\frac{4}{3} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ -2ਨੂੰ -\frac{4}{3} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t=-\frac{4}{-\frac{4}{3}}
ਹੁਣ, ਸਮੀਕਰਨ t=\frac{-3±1}{-\frac{4}{3}} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -3 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾਓ।
t=3
-4 ਨੂੰ -\frac{4}{3} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ -4ਨੂੰ -\frac{4}{3} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t=\frac{3}{2} t=3
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
-\frac{2}{3}t^{2}+3t=3
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-\frac{2}{3}t^{2}+3t}{-\frac{2}{3}}=\frac{3}{-\frac{2}{3}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -\frac{2}{3} ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ, ਜੋ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ ਫ੍ਰੈਕਸ਼ਨ (ਉਪਅੰਸ਼) ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ (ਅੰਕ-ਵਿਉਂਤਕ੍ਰਮ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਨ ਦੇ ਸਮਾਨ ਹੁੰਦਾ ਹੈ।
t^{2}+\frac{3}{-\frac{2}{3}}t=\frac{3}{-\frac{2}{3}}
-\frac{2}{3} ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -\frac{2}{3} ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
t^{2}-\frac{9}{2}t=\frac{3}{-\frac{2}{3}}
3 ਨੂੰ -\frac{2}{3} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 3ਨੂੰ -\frac{2}{3} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t^{2}-\frac{9}{2}t=-\frac{9}{2}
3 ਨੂੰ -\frac{2}{3} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 3ਨੂੰ -\frac{2}{3} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t^{2}-\frac{9}{2}t+\left(-\frac{9}{4}\right)^{2}=-\frac{9}{2}+\left(-\frac{9}{4}\right)^{2}
-\frac{9}{2}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{9}{4} ਨਿਕਲੇ। ਫੇਰ, -\frac{9}{4} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
t^{2}-\frac{9}{2}t+\frac{81}{16}=-\frac{9}{2}+\frac{81}{16}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{9}{4} ਦਾ ਵਰਗ ਕੱਢੋ।
t^{2}-\frac{9}{2}t+\frac{81}{16}=\frac{9}{16}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{9}{2} ਨੂੰ \frac{81}{16} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(t-\frac{9}{4}\right)^{2}=\frac{9}{16}
ਫੈਕਟਰ t^{2}-\frac{9}{2}t+\frac{81}{16}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(t-\frac{9}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
t-\frac{9}{4}=\frac{3}{4} t-\frac{9}{4}=-\frac{3}{4}
ਸਪਸ਼ਟ ਕਰੋ।
t=3 t=\frac{3}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{9}{4} ਨੂੰ ਜੋੜੋ।