ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

-\frac{1}{2}x^{2}-x+4=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-\frac{1}{2}\right)\times 4}}{2\left(-\frac{1}{2}\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -\frac{1}{2} ਨੂੰ a ਲਈ, -1 ਨੂੰ b ਲਈ, ਅਤੇ 4 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-1\right)±\sqrt{1+2\times 4}}{2\left(-\frac{1}{2}\right)}
-4 ਨੂੰ -\frac{1}{2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2\left(-\frac{1}{2}\right)}
2 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-1\right)±\sqrt{9}}{2\left(-\frac{1}{2}\right)}
1 ਨੂੰ 8 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-1\right)±3}{2\left(-\frac{1}{2}\right)}
9 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{1±3}{2\left(-\frac{1}{2}\right)}
-1 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 1 ਹੈ।
x=\frac{1±3}{-1}
2 ਨੂੰ -\frac{1}{2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{4}{-1}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{1±3}{-1} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 1 ਨੂੰ 3 ਵਿੱਚ ਜੋੜੋ।
x=-4
4 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{2}{-1}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{1±3}{-1} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 1 ਵਿੱਚੋਂ 3 ਨੂੰ ਘਟਾਓ।
x=2
-2 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-4 x=2
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
-\frac{1}{2}x^{2}-x+4=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
-\frac{1}{2}x^{2}-x+4-4=-4
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4 ਨੂੰ ਘਟਾਓ।
-\frac{1}{2}x^{2}-x=-4
4 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{-\frac{1}{2}x^{2}-x}{-\frac{1}{2}}=-\frac{4}{-\frac{1}{2}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}+\left(-\frac{1}{-\frac{1}{2}}\right)x=-\frac{4}{-\frac{1}{2}}
-\frac{1}{2} ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -\frac{1}{2} ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+2x=-\frac{4}{-\frac{1}{2}}
-1 ਨੂੰ -\frac{1}{2} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ -1ਨੂੰ -\frac{1}{2} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+2x=8
-4 ਨੂੰ -\frac{1}{2} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ -4ਨੂੰ -\frac{1}{2} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+2x+1^{2}=8+1^{2}
2, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 1 ਨਿਕਲੇ। ਫੇਰ, 1 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+2x+1=8+1
1 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}+2x+1=9
8 ਨੂੰ 1 ਵਿੱਚ ਜੋੜੋ।
\left(x+1\right)^{2}=9
ਫੈਕਟਰ x^{2}+2x+1। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+1=3 x+1=-3
ਸਪਸ਼ਟ ਕਰੋ।
x=2 x=-4
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾਓ।