x ਲਈ ਹਲ ਕਰੋ
x = \frac{\sqrt{13} + 11}{6} \approx 2.434258546
x = \frac{11 - \sqrt{13}}{6} \approx 1.232408121
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
3x^{2}-11x+10=1
x-2 ਨੂੰ 3x-5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
3x^{2}-11x+10-1=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
3x^{2}-11x+9=0
9 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 10 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 3\times 9}}{2\times 3}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 3 ਨੂੰ a ਲਈ, -11 ਨੂੰ b ਲਈ, ਅਤੇ 9 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-11\right)±\sqrt{121-4\times 3\times 9}}{2\times 3}
-11 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-11\right)±\sqrt{121-12\times 9}}{2\times 3}
-4 ਨੂੰ 3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-11\right)±\sqrt{121-108}}{2\times 3}
-12 ਨੂੰ 9 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-11\right)±\sqrt{13}}{2\times 3}
121 ਨੂੰ -108 ਵਿੱਚ ਜੋੜੋ।
x=\frac{11±\sqrt{13}}{2\times 3}
-11 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 11 ਹੈ।
x=\frac{11±\sqrt{13}}{6}
2 ਨੂੰ 3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{\sqrt{13}+11}{6}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{11±\sqrt{13}}{6} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 11 ਨੂੰ \sqrt{13} ਵਿੱਚ ਜੋੜੋ।
x=\frac{11-\sqrt{13}}{6}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{11±\sqrt{13}}{6} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 11 ਵਿੱਚੋਂ \sqrt{13} ਨੂੰ ਘਟਾਓ।
x=\frac{\sqrt{13}+11}{6} x=\frac{11-\sqrt{13}}{6}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
3x^{2}-11x+10=1
x-2 ਨੂੰ 3x-5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
3x^{2}-11x=1-10
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 10 ਨੂੰ ਘਟਾ ਦਿਓ।
3x^{2}-11x=-9
-9 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਵਿੱਚੋਂ 10 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{3x^{2}-11x}{3}=-\frac{9}{3}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}-\frac{11}{3}x=-\frac{9}{3}
3 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 3 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{11}{3}x=-3
-9 ਨੂੰ 3 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-\frac{11}{3}x+\left(-\frac{11}{6}\right)^{2}=-3+\left(-\frac{11}{6}\right)^{2}
-\frac{11}{3}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{11}{6} ਨਿਕਲੇ। ਫੇਰ, -\frac{11}{6} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{11}{3}x+\frac{121}{36}=-3+\frac{121}{36}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{11}{6} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{11}{3}x+\frac{121}{36}=\frac{13}{36}
-3 ਨੂੰ \frac{121}{36} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{11}{6}\right)^{2}=\frac{13}{36}
ਫੈਕਟਰ x^{2}-\frac{11}{3}x+\frac{121}{36}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{11}{6}\right)^{2}}=\sqrt{\frac{13}{36}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{11}{6}=\frac{\sqrt{13}}{6} x-\frac{11}{6}=-\frac{\sqrt{13}}{6}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{13}+11}{6} x=\frac{11-\sqrt{13}}{6}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{11}{6} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}