ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

a+b=-7 ab=3\times 4=12
ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ 3y^{2}+ay+by+4 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-12 -2,-6 -3,-4
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 12 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-12=-13 -2-6=-8 -3-4=-7
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-4 b=-3
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -7 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(3y^{2}-4y\right)+\left(-3y+4\right)
3y^{2}-7y+4 ਨੂੰ \left(3y^{2}-4y\right)+\left(-3y+4\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
y\left(3y-4\right)-\left(3y-4\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ y ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -1 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(3y-4\right)\left(y-1\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 3y-4 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
3y^{2}-7y+4=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
y=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 3\times 4}}{2\times 3}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
y=\frac{-\left(-7\right)±\sqrt{49-4\times 3\times 4}}{2\times 3}
-7 ਦਾ ਵਰਗ ਕਰੋ।
y=\frac{-\left(-7\right)±\sqrt{49-12\times 4}}{2\times 3}
-4 ਨੂੰ 3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
y=\frac{-\left(-7\right)±\sqrt{49-48}}{2\times 3}
-12 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
y=\frac{-\left(-7\right)±\sqrt{1}}{2\times 3}
49 ਨੂੰ -48 ਵਿੱਚ ਜੋੜੋ।
y=\frac{-\left(-7\right)±1}{2\times 3}
1 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
y=\frac{7±1}{2\times 3}
-7 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 7 ਹੈ।
y=\frac{7±1}{6}
2 ਨੂੰ 3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
y=\frac{8}{6}
ਹੁਣ, ਸਮੀਕਰਨ y=\frac{7±1}{6} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 7 ਨੂੰ 1 ਵਿੱਚ ਜੋੜੋ।
y=\frac{4}{3}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{8}{6} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
y=\frac{6}{6}
ਹੁਣ, ਸਮੀਕਰਨ y=\frac{7±1}{6} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 7 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾਓ।
y=1
6 ਨੂੰ 6 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
3y^{2}-7y+4=3\left(y-\frac{4}{3}\right)\left(y-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ \frac{4}{3}ਅਤੇ x_{2} ਲਈ 1 ਬਦਲ ਹੈ।
3y^{2}-7y+4=3\times \frac{3y-4}{3}\left(y-1\right)
ਸਾਂਝਾ ਡੀਨੋਮਿਨੇਟਰ ਕੱਢ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਘਟਾ ਕੇ y ਵਿੱਚੋਂ \frac{4}{3} ਨੂੰ ਘਟਾ ਦਿਓ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
3y^{2}-7y+4=\left(3y-4\right)\left(y-1\right)
3 ਅਤੇ 3 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 3 ਨੂੰ ਰੱਦ ਕਰੋ।