x ਲਈ ਹਲ ਕਰੋ
x=\sqrt{226}+5\approx 20.033296378
x=5-\sqrt{226}\approx -10.033296378
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
120-50x+5x^{2}=125\times 9
20-5x ਨੂੰ 6-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
120-50x+5x^{2}=1125
1125 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 125 ਅਤੇ 9 ਨੂੰ ਗੁਣਾ ਕਰੋ।
120-50x+5x^{2}-1125=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1125 ਨੂੰ ਘਟਾ ਦਿਓ।
-1005-50x+5x^{2}=0
-1005 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 120 ਵਿੱਚੋਂ 1125 ਨੂੰ ਘਟਾ ਦਿਓ।
5x^{2}-50x-1005=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 5\left(-1005\right)}}{2\times 5}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 5 ਨੂੰ a ਲਈ, -50 ਨੂੰ b ਲਈ, ਅਤੇ -1005 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 5\left(-1005\right)}}{2\times 5}
-50 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-50\right)±\sqrt{2500-20\left(-1005\right)}}{2\times 5}
-4 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-50\right)±\sqrt{2500+20100}}{2\times 5}
-20 ਨੂੰ -1005 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-50\right)±\sqrt{22600}}{2\times 5}
2500 ਨੂੰ 20100 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-50\right)±10\sqrt{226}}{2\times 5}
22600 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{50±10\sqrt{226}}{2\times 5}
-50 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 50 ਹੈ।
x=\frac{50±10\sqrt{226}}{10}
2 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{10\sqrt{226}+50}{10}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{50±10\sqrt{226}}{10} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 50 ਨੂੰ 10\sqrt{226} ਵਿੱਚ ਜੋੜੋ।
x=\sqrt{226}+5
50+10\sqrt{226} ਨੂੰ 10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{50-10\sqrt{226}}{10}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{50±10\sqrt{226}}{10} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 50 ਵਿੱਚੋਂ 10\sqrt{226} ਨੂੰ ਘਟਾਓ।
x=5-\sqrt{226}
50-10\sqrt{226} ਨੂੰ 10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\sqrt{226}+5 x=5-\sqrt{226}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
120-50x+5x^{2}=125\times 9
20-5x ਨੂੰ 6-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
120-50x+5x^{2}=1125
1125 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 125 ਅਤੇ 9 ਨੂੰ ਗੁਣਾ ਕਰੋ।
-50x+5x^{2}=1125-120
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 120 ਨੂੰ ਘਟਾ ਦਿਓ।
-50x+5x^{2}=1005
1005 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1125 ਵਿੱਚੋਂ 120 ਨੂੰ ਘਟਾ ਦਿਓ।
5x^{2}-50x=1005
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{5x^{2}-50x}{5}=\frac{1005}{5}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 5 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{50}{5}\right)x=\frac{1005}{5}
5 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 5 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-10x=\frac{1005}{5}
-50 ਨੂੰ 5 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-10x=201
1005 ਨੂੰ 5 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-10x+\left(-5\right)^{2}=201+\left(-5\right)^{2}
-10, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -5 ਨਿਕਲੇ। ਫੇਰ, -5 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-10x+25=201+25
-5 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}-10x+25=226
201 ਨੂੰ 25 ਵਿੱਚ ਜੋੜੋ।
\left(x-5\right)^{2}=226
ਫੈਕਟਰ x^{2}-10x+25। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-5\right)^{2}}=\sqrt{226}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-5=\sqrt{226} x-5=-\sqrt{226}
ਸਪਸ਼ਟ ਕਰੋ।
x=\sqrt{226}+5 x=5-\sqrt{226}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 5 ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}