ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

175x-x^{2}=4000
175-x ਨੂੰ x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
175x-x^{2}-4000=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4000 ਨੂੰ ਘਟਾ ਦਿਓ।
-x^{2}+175x-4000=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-175±\sqrt{175^{2}-4\left(-1\right)\left(-4000\right)}}{2\left(-1\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -1 ਨੂੰ a ਲਈ, 175 ਨੂੰ b ਲਈ, ਅਤੇ -4000 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-175±\sqrt{30625-4\left(-1\right)\left(-4000\right)}}{2\left(-1\right)}
175 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-175±\sqrt{30625+4\left(-4000\right)}}{2\left(-1\right)}
-4 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-175±\sqrt{30625-16000}}{2\left(-1\right)}
4 ਨੂੰ -4000 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-175±\sqrt{14625}}{2\left(-1\right)}
30625 ਨੂੰ -16000 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-175±15\sqrt{65}}{2\left(-1\right)}
14625 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-175±15\sqrt{65}}{-2}
2 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{15\sqrt{65}-175}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-175±15\sqrt{65}}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -175 ਨੂੰ 15\sqrt{65} ਵਿੱਚ ਜੋੜੋ।
x=\frac{175-15\sqrt{65}}{2}
-175+15\sqrt{65} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-15\sqrt{65}-175}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-175±15\sqrt{65}}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -175 ਵਿੱਚੋਂ 15\sqrt{65} ਨੂੰ ਘਟਾਓ।
x=\frac{15\sqrt{65}+175}{2}
-175-15\sqrt{65} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{175-15\sqrt{65}}{2} x=\frac{15\sqrt{65}+175}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
175x-x^{2}=4000
175-x ਨੂੰ x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-x^{2}+175x=4000
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-x^{2}+175x}{-1}=\frac{4000}{-1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{175}{-1}x=\frac{4000}{-1}
-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-175x=\frac{4000}{-1}
175 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-175x=-4000
4000 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-175x+\left(-\frac{175}{2}\right)^{2}=-4000+\left(-\frac{175}{2}\right)^{2}
-175, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{175}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{175}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-175x+\frac{30625}{4}=-4000+\frac{30625}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{175}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-175x+\frac{30625}{4}=\frac{14625}{4}
-4000 ਨੂੰ \frac{30625}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{175}{2}\right)^{2}=\frac{14625}{4}
ਫੈਕਟਰ x^{2}-175x+\frac{30625}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{175}{2}\right)^{2}}=\sqrt{\frac{14625}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{175}{2}=\frac{15\sqrt{65}}{2} x-\frac{175}{2}=-\frac{15\sqrt{65}}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{15\sqrt{65}+175}{2} x=\frac{175-15\sqrt{65}}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{175}{2} ਨੂੰ ਜੋੜੋ।