x ਲਈ ਹਲ ਕਰੋ
x=-2
x=8
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
2160+60x-10x^{2}=2000
12+x ਨੂੰ 180-10x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
2160+60x-10x^{2}-2000=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2000 ਨੂੰ ਘਟਾ ਦਿਓ।
160+60x-10x^{2}=0
160 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2160 ਵਿੱਚੋਂ 2000 ਨੂੰ ਘਟਾ ਦਿਓ।
-10x^{2}+60x+160=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-60±\sqrt{60^{2}-4\left(-10\right)\times 160}}{2\left(-10\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -10 ਨੂੰ a ਲਈ, 60 ਨੂੰ b ਲਈ, ਅਤੇ 160 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-60±\sqrt{3600-4\left(-10\right)\times 160}}{2\left(-10\right)}
60 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-60±\sqrt{3600+40\times 160}}{2\left(-10\right)}
-4 ਨੂੰ -10 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-60±\sqrt{3600+6400}}{2\left(-10\right)}
40 ਨੂੰ 160 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-60±\sqrt{10000}}{2\left(-10\right)}
3600 ਨੂੰ 6400 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-60±100}{2\left(-10\right)}
10000 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-60±100}{-20}
2 ਨੂੰ -10 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{40}{-20}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-60±100}{-20} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -60 ਨੂੰ 100 ਵਿੱਚ ਜੋੜੋ।
x=-2
40 ਨੂੰ -20 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{160}{-20}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-60±100}{-20} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -60 ਵਿੱਚੋਂ 100 ਨੂੰ ਘਟਾਓ।
x=8
-160 ਨੂੰ -20 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-2 x=8
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
2160+60x-10x^{2}=2000
12+x ਨੂੰ 180-10x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
60x-10x^{2}=2000-2160
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2160 ਨੂੰ ਘਟਾ ਦਿਓ।
60x-10x^{2}=-160
-160 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2000 ਵਿੱਚੋਂ 2160 ਨੂੰ ਘਟਾ ਦਿਓ।
-10x^{2}+60x=-160
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-10x^{2}+60x}{-10}=-\frac{160}{-10}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -10 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{60}{-10}x=-\frac{160}{-10}
-10 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -10 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-6x=-\frac{160}{-10}
60 ਨੂੰ -10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-6x=16
-160 ਨੂੰ -10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-6x+\left(-3\right)^{2}=16+\left(-3\right)^{2}
-6, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -3 ਨਿਕਲੇ। ਫੇਰ, -3 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-6x+9=16+9
-3 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}-6x+9=25
16 ਨੂੰ 9 ਵਿੱਚ ਜੋੜੋ।
\left(x-3\right)^{2}=25
ਫੈਕਟਰ x^{2}-6x+9। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-3\right)^{2}}=\sqrt{25}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-3=5 x-3=-5
ਸਪਸ਼ਟ ਕਰੋ।
x=8 x=-2
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 3 ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}