ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
y ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

-y^{2}+3y+5=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
y=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -1 ਨੂੰ a ਲਈ, 3 ਨੂੰ b ਲਈ, ਅਤੇ 5 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
y=\frac{-3±\sqrt{9-4\left(-1\right)\times 5}}{2\left(-1\right)}
3 ਦਾ ਵਰਗ ਕਰੋ।
y=\frac{-3±\sqrt{9+4\times 5}}{2\left(-1\right)}
-4 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
y=\frac{-3±\sqrt{9+20}}{2\left(-1\right)}
4 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
y=\frac{-3±\sqrt{29}}{2\left(-1\right)}
9 ਨੂੰ 20 ਵਿੱਚ ਜੋੜੋ।
y=\frac{-3±\sqrt{29}}{-2}
2 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
y=\frac{\sqrt{29}-3}{-2}
ਹੁਣ, ਸਮੀਕਰਨ y=\frac{-3±\sqrt{29}}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -3 ਨੂੰ \sqrt{29} ਵਿੱਚ ਜੋੜੋ।
y=\frac{3-\sqrt{29}}{2}
-3+\sqrt{29} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
y=\frac{-\sqrt{29}-3}{-2}
ਹੁਣ, ਸਮੀਕਰਨ y=\frac{-3±\sqrt{29}}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -3 ਵਿੱਚੋਂ \sqrt{29} ਨੂੰ ਘਟਾਓ।
y=\frac{\sqrt{29}+3}{2}
-3-\sqrt{29} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
y=\frac{3-\sqrt{29}}{2} y=\frac{\sqrt{29}+3}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
-y^{2}+3y+5=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
-y^{2}+3y+5-5=-5
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5 ਨੂੰ ਘਟਾਓ।
-y^{2}+3y=-5
5 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{-y^{2}+3y}{-1}=-\frac{5}{-1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
y^{2}+\frac{3}{-1}y=-\frac{5}{-1}
-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
y^{2}-3y=-\frac{5}{-1}
3 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
y^{2}-3y=5
-5 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
y^{2}-3y+\left(-\frac{3}{2}\right)^{2}=5+\left(-\frac{3}{2}\right)^{2}
-3, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{3}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{3}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
y^{2}-3y+\frac{9}{4}=5+\frac{9}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{3}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
y^{2}-3y+\frac{9}{4}=\frac{29}{4}
5 ਨੂੰ \frac{9}{4} ਵਿੱਚ ਜੋੜੋ।
\left(y-\frac{3}{2}\right)^{2}=\frac{29}{4}
ਫੈਕਟਰ y^{2}-3y+\frac{9}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(y-\frac{3}{2}\right)^{2}}=\sqrt{\frac{29}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
y-\frac{3}{2}=\frac{\sqrt{29}}{2} y-\frac{3}{2}=-\frac{\sqrt{29}}{2}
ਸਪਸ਼ਟ ਕਰੋ।
y=\frac{\sqrt{29}+3}{2} y=\frac{3-\sqrt{29}}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{3}{2} ਨੂੰ ਜੋੜੋ।