ਮੁਲਾਂਕਣ ਕਰੋ
2x\left(x-2a\right)
ਵਿਸਤਾਰ ਕਰੋ
2x^{2}-4ax
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
x^{3}-a^{3}-a^{2}x-\left(x+a\right)\left(x-a\right)\left(x-1\right)+a^{2}\left(a-3\right)+\left(2a-x\right)^{2}
x-a ਨੂੰ x^{2}+ax+a^{2} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
x^{3}-a^{3}-a^{2}x-\left(x^{2}-a^{2}\right)\left(x-1\right)+a^{2}\left(a-3\right)+\left(2a-x\right)^{2}
x+a ਨੂੰ x-a ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
x^{3}-a^{3}-a^{2}x-\left(x^{3}-x^{2}-a^{2}x+a^{2}\right)+a^{2}\left(a-3\right)+\left(2a-x\right)^{2}
x^{2}-a^{2} ਨੂੰ x-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{3}-a^{3}-a^{2}x-x^{3}+x^{2}+a^{2}x-a^{2}+a^{2}\left(a-3\right)+\left(2a-x\right)^{2}
x^{3}-x^{2}-a^{2}x+a^{2} ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
x^{3}-a^{3}-a^{2}x-x^{3}+x^{2}+a^{2}x-a^{2}+a^{3}-3a^{2}+\left(2a-x\right)^{2}
a^{2} ਨੂੰ a-3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{3}-a^{3}-a^{2}x-x^{3}+x^{2}+a^{2}x-4a^{2}+a^{3}+\left(2a-x\right)^{2}
-4a^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -a^{2} ਅਤੇ -3a^{2} ਨੂੰ ਮਿਲਾਓ।
x^{3}-a^{3}-a^{2}x-x^{3}+x^{2}+a^{2}x-4a^{2}+a^{3}+4a^{2}-4ax+x^{2}
\left(2a-x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{3}-a^{3}-a^{2}x-x^{3}+x^{2}+a^{2}x+a^{3}-4ax+x^{2}
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -4a^{2} ਅਤੇ 4a^{2} ਨੂੰ ਮਿਲਾਓ।
x^{3}-a^{3}-a^{2}x-x^{3}+2x^{2}+a^{2}x+a^{3}-4ax
2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ x^{2} ਨੂੰ ਮਿਲਾਓ।
-a^{3}-a^{2}x+2x^{2}+a^{2}x+a^{3}-4ax
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{3} ਅਤੇ -x^{3} ਨੂੰ ਮਿਲਾਓ।
-a^{3}+2x^{2}+a^{3}-4ax
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -a^{2}x ਅਤੇ a^{2}x ਨੂੰ ਮਿਲਾਓ।
2x^{2}-4ax
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -a^{3} ਅਤੇ a^{3} ਨੂੰ ਮਿਲਾਓ।
x^{3}-a^{3}-a^{2}x-\left(x+a\right)\left(x-a\right)\left(x-1\right)+a^{2}\left(a-3\right)+\left(2a-x\right)^{2}
x-a ਨੂੰ x^{2}+ax+a^{2} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
x^{3}-a^{3}-a^{2}x-\left(x^{2}-a^{2}\right)\left(x-1\right)+a^{2}\left(a-3\right)+\left(2a-x\right)^{2}
x+a ਨੂੰ x-a ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
x^{3}-a^{3}-a^{2}x-\left(x^{3}-x^{2}-a^{2}x+a^{2}\right)+a^{2}\left(a-3\right)+\left(2a-x\right)^{2}
x^{2}-a^{2} ਨੂੰ x-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{3}-a^{3}-a^{2}x-x^{3}+x^{2}+a^{2}x-a^{2}+a^{2}\left(a-3\right)+\left(2a-x\right)^{2}
x^{3}-x^{2}-a^{2}x+a^{2} ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
x^{3}-a^{3}-a^{2}x-x^{3}+x^{2}+a^{2}x-a^{2}+a^{3}-3a^{2}+\left(2a-x\right)^{2}
a^{2} ਨੂੰ a-3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{3}-a^{3}-a^{2}x-x^{3}+x^{2}+a^{2}x-4a^{2}+a^{3}+\left(2a-x\right)^{2}
-4a^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -a^{2} ਅਤੇ -3a^{2} ਨੂੰ ਮਿਲਾਓ।
x^{3}-a^{3}-a^{2}x-x^{3}+x^{2}+a^{2}x-4a^{2}+a^{3}+4a^{2}-4ax+x^{2}
\left(2a-x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{3}-a^{3}-a^{2}x-x^{3}+x^{2}+a^{2}x+a^{3}-4ax+x^{2}
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -4a^{2} ਅਤੇ 4a^{2} ਨੂੰ ਮਿਲਾਓ।
x^{3}-a^{3}-a^{2}x-x^{3}+2x^{2}+a^{2}x+a^{3}-4ax
2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ x^{2} ਨੂੰ ਮਿਲਾਓ।
-a^{3}-a^{2}x+2x^{2}+a^{2}x+a^{3}-4ax
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{3} ਅਤੇ -x^{3} ਨੂੰ ਮਿਲਾਓ।
-a^{3}+2x^{2}+a^{3}-4ax
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -a^{2}x ਅਤੇ a^{2}x ਨੂੰ ਮਿਲਾਓ।
2x^{2}-4ax
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -a^{3} ਅਤੇ a^{3} ਨੂੰ ਮਿਲਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}