m ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
\left\{\begin{matrix}m=\frac{20x^{2}-280x+981}{20no\left(x+6\right)x^{2}}\text{, }&x\neq 0\text{ and }o\neq 0\text{ and }x\neq -6\text{ and }n\neq 0\\m\in \mathrm{C}\text{, }&\left(x=\frac{\sqrt{5}i}{10}+7\text{ and }n=0\right)\text{ or }\left(x=\frac{\sqrt{5}i}{10}+7\text{ and }o=0\right)\text{ or }\left(x=-\frac{\sqrt{5}i}{10}+7\text{ and }n=0\right)\text{ or }\left(x=-\frac{\sqrt{5}i}{10}+7\text{ and }o=0\right)\end{matrix}\right.
n ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
\left\{\begin{matrix}n=\frac{20x^{2}-280x+981}{20mo\left(x+6\right)x^{2}}\text{, }&x\neq 0\text{ and }o\neq 0\text{ and }x\neq -6\text{ and }m\neq 0\\n\in \mathrm{C}\text{, }&\left(x=\frac{\sqrt{5}i}{10}+7\text{ and }m=0\right)\text{ or }\left(x=\frac{\sqrt{5}i}{10}+7\text{ and }o=0\right)\text{ or }\left(x=-\frac{\sqrt{5}i}{10}+7\text{ and }m=0\right)\text{ or }\left(x=-\frac{\sqrt{5}i}{10}+7\text{ and }o=0\right)\end{matrix}\right.
m ਲਈ ਹਲ ਕਰੋ
m=\frac{20x^{2}-280x+981}{20no\left(x+6\right)x^{2}}
x\neq 0\text{ and }o\neq 0\text{ and }x\neq -6\text{ and }n\neq 0
n ਲਈ ਹਲ ਕਰੋ
n=\frac{20x^{2}-280x+981}{20mo\left(x+6\right)x^{2}}
x\neq 0\text{ and }o\neq 0\text{ and }x\neq -6\text{ and }m\neq 0
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
\left(x-7\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
x^{2} ਨੂੰ 6+x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
6x^{2}+x^{3} ਨੂੰ m ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
6x^{2}m+x^{3}m ਨੂੰ o ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
6x^{2}mo+x^{3}mo ਨੂੰ n ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
6x^{2}mon+x^{3}mon ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 14x ਜੋੜੋ।
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 49 ਨੂੰ ਘਟਾ ਦਿਓ।
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
-\frac{981}{20} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -\frac{1}{20} ਵਿੱਚੋਂ 49 ਨੂੰ ਘਟਾ ਦਿਓ।
\left(-6x^{2}on-x^{3}on\right)m=-\frac{981}{20}-x^{2}+14x
m ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\left(-nox^{3}-6nox^{2}\right)m=-x^{2}+14x-\frac{981}{20}
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(-nox^{3}-6nox^{2}\right)m}{-nox^{3}-6nox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -6x^{2}on-x^{3}on ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
m=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
-6x^{2}on-x^{3}on ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -6x^{2}on-x^{3}on ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
m=-\frac{-20x^{2}+280x-981}{20no\left(x+6\right)x^{2}}
-x^{2}+14x-\frac{981}{20} ਨੂੰ -6x^{2}on-x^{3}on ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
\left(x-7\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
x^{2} ਨੂੰ 6+x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
6x^{2}+x^{3} ਨੂੰ m ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
6x^{2}m+x^{3}m ਨੂੰ o ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
6x^{2}mo+x^{3}mo ਨੂੰ n ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
6x^{2}mon+x^{3}mon ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 14x ਜੋੜੋ।
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 49 ਨੂੰ ਘਟਾ ਦਿਓ।
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
-\frac{981}{20} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -\frac{1}{20} ਵਿੱਚੋਂ 49 ਨੂੰ ਘਟਾ ਦਿਓ।
\left(-6x^{2}mo-x^{3}mo\right)n=-\frac{981}{20}-x^{2}+14x
n ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\left(-mox^{3}-6mox^{2}\right)n=-x^{2}+14x-\frac{981}{20}
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(-mox^{3}-6mox^{2}\right)n}{-mox^{3}-6mox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -6x^{2}mo-x^{3}mo ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
n=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
-6x^{2}mo-x^{3}mo ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -6x^{2}mo-x^{3}mo ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
n=-\frac{-20x^{2}+280x-981}{20mo\left(x+6\right)x^{2}}
-x^{2}+14x-\frac{981}{20} ਨੂੰ -6x^{2}mo-x^{3}mo ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
\left(x-7\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
x^{2} ਨੂੰ 6+x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
6x^{2}+x^{3} ਨੂੰ m ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
6x^{2}m+x^{3}m ਨੂੰ o ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
6x^{2}mo+x^{3}mo ਨੂੰ n ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
6x^{2}mon+x^{3}mon ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 14x ਜੋੜੋ।
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 49 ਨੂੰ ਘਟਾ ਦਿਓ।
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
-\frac{981}{20} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -\frac{1}{20} ਵਿੱਚੋਂ 49 ਨੂੰ ਘਟਾ ਦਿਓ।
\left(-6x^{2}on-x^{3}on\right)m=-\frac{981}{20}-x^{2}+14x
m ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\left(-nox^{3}-6nox^{2}\right)m=-x^{2}+14x-\frac{981}{20}
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(-nox^{3}-6nox^{2}\right)m}{-nox^{3}-6nox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -6x^{2}on-x^{3}on ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
m=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
-6x^{2}on-x^{3}on ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -6x^{2}on-x^{3}on ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
m=\frac{-20x^{2}+280x-981}{-20no\left(x+6\right)x^{2}}
-\frac{981}{20}-x^{2}+14x ਨੂੰ -6x^{2}on-x^{3}on ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
\left(x-7\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
x^{2} ਨੂੰ 6+x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
6x^{2}+x^{3} ਨੂੰ m ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
6x^{2}m+x^{3}m ਨੂੰ o ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
6x^{2}mo+x^{3}mo ਨੂੰ n ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
6x^{2}mon+x^{3}mon ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 14x ਜੋੜੋ।
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 49 ਨੂੰ ਘਟਾ ਦਿਓ।
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
-\frac{981}{20} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -\frac{1}{20} ਵਿੱਚੋਂ 49 ਨੂੰ ਘਟਾ ਦਿਓ।
\left(-6x^{2}mo-x^{3}mo\right)n=-\frac{981}{20}-x^{2}+14x
n ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\left(-mox^{3}-6mox^{2}\right)n=-x^{2}+14x-\frac{981}{20}
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(-mox^{3}-6mox^{2}\right)n}{-mox^{3}-6mox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -6x^{2}mo-x^{3}mo ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
n=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
-6x^{2}mo-x^{3}mo ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -6x^{2}mo-x^{3}mo ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
n=\frac{-20x^{2}+280x-981}{-20mo\left(x+6\right)x^{2}}
-\frac{981}{20}-x^{2}+14x ਨੂੰ -6x^{2}mo-x^{3}mo ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}