x ਲਈ ਹਲ ਕਰੋ
x=4
x = \frac{9}{4} = 2\frac{1}{4} = 2.25
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
4\left(x-3\right)^{2}=x
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
4\left(x^{2}-6x+9\right)=x
\left(x-3\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
4x^{2}-24x+36=x
4 ਨੂੰ x^{2}-6x+9 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
4x^{2}-24x+36-x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x ਨੂੰ ਘਟਾ ਦਿਓ।
4x^{2}-25x+36=0
-25x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -24x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
a+b=-25 ab=4\times 36=144
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ 4x^{2}+ax+bx+36 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-144 -2,-72 -3,-48 -4,-36 -6,-24 -8,-18 -9,-16 -12,-12
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 144 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-144=-145 -2-72=-74 -3-48=-51 -4-36=-40 -6-24=-30 -8-18=-26 -9-16=-25 -12-12=-24
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-16 b=-9
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -25 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(4x^{2}-16x\right)+\left(-9x+36\right)
4x^{2}-25x+36 ਨੂੰ \left(4x^{2}-16x\right)+\left(-9x+36\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
4x\left(x-4\right)-9\left(x-4\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 4x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -9 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(x-4\right)\left(4x-9\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x-4 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=4 x=\frac{9}{4}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x-4=0 ਅਤੇ 4x-9=0 ਨੂੰ ਹੱਲ ਕਰੋ।
4\left(x-3\right)^{2}=x
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
4\left(x^{2}-6x+9\right)=x
\left(x-3\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
4x^{2}-24x+36=x
4 ਨੂੰ x^{2}-6x+9 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
4x^{2}-24x+36-x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x ਨੂੰ ਘਟਾ ਦਿਓ।
4x^{2}-25x+36=0
-25x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -24x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 4\times 36}}{2\times 4}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 4 ਨੂੰ a ਲਈ, -25 ਨੂੰ b ਲਈ, ਅਤੇ 36 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-25\right)±\sqrt{625-4\times 4\times 36}}{2\times 4}
-25 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-25\right)±\sqrt{625-16\times 36}}{2\times 4}
-4 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-25\right)±\sqrt{625-576}}{2\times 4}
-16 ਨੂੰ 36 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-25\right)±\sqrt{49}}{2\times 4}
625 ਨੂੰ -576 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-25\right)±7}{2\times 4}
49 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{25±7}{2\times 4}
-25 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 25 ਹੈ।
x=\frac{25±7}{8}
2 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{32}{8}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{25±7}{8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 25 ਨੂੰ 7 ਵਿੱਚ ਜੋੜੋ।
x=4
32 ਨੂੰ 8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{18}{8}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{25±7}{8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 25 ਵਿੱਚੋਂ 7 ਨੂੰ ਘਟਾਓ।
x=\frac{9}{4}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{18}{8} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=4 x=\frac{9}{4}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
4\left(x-3\right)^{2}=x
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
4\left(x^{2}-6x+9\right)=x
\left(x-3\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
4x^{2}-24x+36=x
4 ਨੂੰ x^{2}-6x+9 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
4x^{2}-24x+36-x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x ਨੂੰ ਘਟਾ ਦਿਓ।
4x^{2}-25x+36=0
-25x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -24x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
4x^{2}-25x=-36
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 36 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
\frac{4x^{2}-25x}{4}=-\frac{36}{4}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}-\frac{25}{4}x=-\frac{36}{4}
4 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 4 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{25}{4}x=-9
-36 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-\frac{25}{4}x+\left(-\frac{25}{8}\right)^{2}=-9+\left(-\frac{25}{8}\right)^{2}
-\frac{25}{4}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{25}{8} ਨਿਕਲੇ। ਫੇਰ, -\frac{25}{8} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{25}{4}x+\frac{625}{64}=-9+\frac{625}{64}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{25}{8} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{25}{4}x+\frac{625}{64}=\frac{49}{64}
-9 ਨੂੰ \frac{625}{64} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{25}{8}\right)^{2}=\frac{49}{64}
ਫੈਕਟਰ x^{2}-\frac{25}{4}x+\frac{625}{64}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{25}{8}\right)^{2}}=\sqrt{\frac{49}{64}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{25}{8}=\frac{7}{8} x-\frac{25}{8}=-\frac{7}{8}
ਸਪਸ਼ਟ ਕਰੋ।
x=4 x=\frac{9}{4}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{25}{8} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}