x ਲਈ ਹਲ ਕਰੋ
x=-\frac{1}{4}=-0.25
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
x^{2}-4x+4-9\left(x+1\right)^{2}=0
\left(x-2\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-4x+4-9\left(x^{2}+2x+1\right)=0
\left(x+1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-4x+4-9x^{2}-18x-9=0
-9 ਨੂੰ x^{2}+2x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-8x^{2}-4x+4-18x-9=0
-8x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -9x^{2} ਨੂੰ ਮਿਲਾਓ।
-8x^{2}-22x+4-9=0
-22x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -4x ਅਤੇ -18x ਨੂੰ ਮਿਲਾਓ।
-8x^{2}-22x-5=0
-5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਵਿੱਚੋਂ 9 ਨੂੰ ਘਟਾ ਦਿਓ।
a+b=-22 ab=-8\left(-5\right)=40
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ -8x^{2}+ax+bx-5 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-40 -2,-20 -4,-10 -5,-8
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 40 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-40=-41 -2-20=-22 -4-10=-14 -5-8=-13
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-2 b=-20
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -22 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(-8x^{2}-2x\right)+\left(-20x-5\right)
-8x^{2}-22x-5 ਨੂੰ \left(-8x^{2}-2x\right)+\left(-20x-5\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
2x\left(-4x-1\right)+5\left(-4x-1\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 2x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 5 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(-4x-1\right)\left(2x+5\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ -4x-1 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=-\frac{1}{4} x=-\frac{5}{2}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, -4x-1=0 ਅਤੇ 2x+5=0 ਨੂੰ ਹੱਲ ਕਰੋ।
x^{2}-4x+4-9\left(x+1\right)^{2}=0
\left(x-2\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-4x+4-9\left(x^{2}+2x+1\right)=0
\left(x+1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-4x+4-9x^{2}-18x-9=0
-9 ਨੂੰ x^{2}+2x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-8x^{2}-4x+4-18x-9=0
-8x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -9x^{2} ਨੂੰ ਮਿਲਾਓ।
-8x^{2}-22x+4-9=0
-22x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -4x ਅਤੇ -18x ਨੂੰ ਮਿਲਾਓ।
-8x^{2}-22x-5=0
-5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਵਿੱਚੋਂ 9 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\left(-8\right)\left(-5\right)}}{2\left(-8\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -8 ਨੂੰ a ਲਈ, -22 ਨੂੰ b ਲਈ, ਅਤੇ -5 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-22\right)±\sqrt{484-4\left(-8\right)\left(-5\right)}}{2\left(-8\right)}
-22 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-22\right)±\sqrt{484+32\left(-5\right)}}{2\left(-8\right)}
-4 ਨੂੰ -8 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-22\right)±\sqrt{484-160}}{2\left(-8\right)}
32 ਨੂੰ -5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-22\right)±\sqrt{324}}{2\left(-8\right)}
484 ਨੂੰ -160 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-22\right)±18}{2\left(-8\right)}
324 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{22±18}{2\left(-8\right)}
-22 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 22 ਹੈ।
x=\frac{22±18}{-16}
2 ਨੂੰ -8 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{40}{-16}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{22±18}{-16} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 22 ਨੂੰ 18 ਵਿੱਚ ਜੋੜੋ।
x=-\frac{5}{2}
8 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{40}{-16} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=\frac{4}{-16}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{22±18}{-16} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 22 ਵਿੱਚੋਂ 18 ਨੂੰ ਘਟਾਓ।
x=-\frac{1}{4}
4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{4}{-16} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=-\frac{5}{2} x=-\frac{1}{4}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x^{2}-4x+4-9\left(x+1\right)^{2}=0
\left(x-2\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-4x+4-9\left(x^{2}+2x+1\right)=0
\left(x+1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-4x+4-9x^{2}-18x-9=0
-9 ਨੂੰ x^{2}+2x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-8x^{2}-4x+4-18x-9=0
-8x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -9x^{2} ਨੂੰ ਮਿਲਾਓ।
-8x^{2}-22x+4-9=0
-22x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -4x ਅਤੇ -18x ਨੂੰ ਮਿਲਾਓ।
-8x^{2}-22x-5=0
-5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਵਿੱਚੋਂ 9 ਨੂੰ ਘਟਾ ਦਿਓ।
-8x^{2}-22x=5
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 5 ਜੋੜੋ। ਸਿਫਰ ਵਿੱਚ ਜੋੜੀ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
\frac{-8x^{2}-22x}{-8}=\frac{5}{-8}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -8 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{22}{-8}\right)x=\frac{5}{-8}
-8 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -8 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{11}{4}x=\frac{5}{-8}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-22}{-8} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{11}{4}x=-\frac{5}{8}
5 ਨੂੰ -8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+\frac{11}{4}x+\left(\frac{11}{8}\right)^{2}=-\frac{5}{8}+\left(\frac{11}{8}\right)^{2}
\frac{11}{4}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{11}{8} ਨਿਕਲੇ। ਫੇਰ, \frac{11}{8} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{11}{4}x+\frac{121}{64}=-\frac{5}{8}+\frac{121}{64}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{11}{8} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{11}{4}x+\frac{121}{64}=\frac{81}{64}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{5}{8} ਨੂੰ \frac{121}{64} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{11}{8}\right)^{2}=\frac{81}{64}
ਫੈਕਟਰ x^{2}+\frac{11}{4}x+\frac{121}{64}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{11}{8}\right)^{2}}=\sqrt{\frac{81}{64}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{11}{8}=\frac{9}{8} x+\frac{11}{8}=-\frac{9}{8}
ਸਪਸ਼ਟ ਕਰੋ।
x=-\frac{1}{4} x=-\frac{5}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{11}{8} ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}