x ਲਈ ਹਲ ਕਰੋ
x=2
x=4
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
x^{2}-4x+4+1=2x-3
\left(x-2\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-4x+5=2x-3
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
x^{2}-4x+5-2x=-3
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2x ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-6x+5=-3
-6x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -4x ਅਤੇ -2x ਨੂੰ ਮਿਲਾਓ।
x^{2}-6x+5+3=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 3 ਜੋੜੋ।
x^{2}-6x+8=0
8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
a+b=-6 ab=8
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ਸੂਤਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ x^{2}-6x+8 ਦਾ ਫੈਕਟਰ ਬਣਾਓ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-8 -2,-4
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 8 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-8=-9 -2-4=-6
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-4 b=-2
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -6 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(x-4\right)\left(x-2\right)
ਹਾਸਲ ਕੀਤੀਆਂ ਵੈਲਯੂਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ \left(x+a\right)\left(x+b\right) ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
x=4 x=2
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x-4=0 ਅਤੇ x-2=0 ਨੂੰ ਹੱਲ ਕਰੋ।
x^{2}-4x+4+1=2x-3
\left(x-2\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-4x+5=2x-3
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
x^{2}-4x+5-2x=-3
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2x ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-6x+5=-3
-6x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -4x ਅਤੇ -2x ਨੂੰ ਮਿਲਾਓ।
x^{2}-6x+5+3=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 3 ਜੋੜੋ।
x^{2}-6x+8=0
8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
a+b=-6 ab=1\times 8=8
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ x^{2}+ax+bx+8 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-8 -2,-4
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 8 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-8=-9 -2-4=-6
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-4 b=-2
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -6 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(x^{2}-4x\right)+\left(-2x+8\right)
x^{2}-6x+8 ਨੂੰ \left(x^{2}-4x\right)+\left(-2x+8\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
x\left(x-4\right)-2\left(x-4\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -2 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(x-4\right)\left(x-2\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x-4 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=4 x=2
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x-4=0 ਅਤੇ x-2=0 ਨੂੰ ਹੱਲ ਕਰੋ।
x^{2}-4x+4+1=2x-3
\left(x-2\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-4x+5=2x-3
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
x^{2}-4x+5-2x=-3
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2x ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-6x+5=-3
-6x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -4x ਅਤੇ -2x ਨੂੰ ਮਿਲਾਓ।
x^{2}-6x+5+3=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 3 ਜੋੜੋ।
x^{2}-6x+8=0
8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 8}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, -6 ਨੂੰ b ਲਈ, ਅਤੇ 8 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-6\right)±\sqrt{36-4\times 8}}{2}
-6 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-6\right)±\sqrt{36-32}}{2}
-4 ਨੂੰ 8 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-6\right)±\sqrt{4}}{2}
36 ਨੂੰ -32 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-6\right)±2}{2}
4 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{6±2}{2}
-6 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 6 ਹੈ।
x=\frac{8}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{6±2}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 6 ਨੂੰ 2 ਵਿੱਚ ਜੋੜੋ।
x=4
8 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{4}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{6±2}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 6 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾਓ।
x=2
4 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=4 x=2
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x^{2}-4x+4+1=2x-3
\left(x-2\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-4x+5=2x-3
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
x^{2}-4x+5-2x=-3
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2x ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-6x+5=-3
-6x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -4x ਅਤੇ -2x ਨੂੰ ਮਿਲਾਓ।
x^{2}-6x=-3-5
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-6x=-8
-8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -3 ਵਿੱਚੋਂ 5 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-6x+\left(-3\right)^{2}=-8+\left(-3\right)^{2}
-6, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -3 ਨਿਕਲੇ। ਫੇਰ, -3 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-6x+9=-8+9
-3 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}-6x+9=1
-8 ਨੂੰ 9 ਵਿੱਚ ਜੋੜੋ।
\left(x-3\right)^{2}=1
ਫੈਕਟਰ x^{2}-6x+9। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-3\right)^{2}}=\sqrt{1}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-3=1 x-3=-1
ਸਪਸ਼ਟ ਕਰੋ।
x=4 x=2
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 3 ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}