x ਲਈ ਹਲ ਕਰੋ
x=-4
x=2
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
\left(x-1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
\left(x+2\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ x^{2} ਨੂੰ ਮਿਲਾਓ।
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
2x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2x ਅਤੇ 4x ਨੂੰ ਮਿਲਾਓ।
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 4 ਨੂੰ ਜੋੜੋ।
2x^{2}+2x+5-\left(x^{2}-9\right)=22
\left(x-3\right)\left(x+3\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}। 3 ਦਾ ਵਰਗ ਕਰੋ।
2x^{2}+2x+5-x^{2}+9=22
x^{2}-9 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
x^{2}+2x+5+9=22
x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
x^{2}+2x+14=22
14 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 9 ਨੂੰ ਜੋੜੋ।
x^{2}+2x+14-22=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 22 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}+2x-8=0
-8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 14 ਵਿੱਚੋਂ 22 ਨੂੰ ਘਟਾ ਦਿਓ।
a+b=2 ab=-8
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ਸੂਤਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ x^{2}+2x-8 ਦਾ ਫੈਕਟਰ ਬਣਾਓ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,8 -2,4
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, ਪਾਜ਼ੇਟਿਵ ਨੰਬਰ ਦੀ ਨੈਗੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -8 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1+8=7 -2+4=2
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-2 b=4
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 2 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(x-2\right)\left(x+4\right)
ਹਾਸਲ ਕੀਤੀਆਂ ਵੈਲਯੂਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ \left(x+a\right)\left(x+b\right) ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
x=2 x=-4
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x-2=0 ਅਤੇ x+4=0 ਨੂੰ ਹੱਲ ਕਰੋ।
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
\left(x-1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
\left(x+2\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ x^{2} ਨੂੰ ਮਿਲਾਓ।
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
2x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2x ਅਤੇ 4x ਨੂੰ ਮਿਲਾਓ।
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 4 ਨੂੰ ਜੋੜੋ।
2x^{2}+2x+5-\left(x^{2}-9\right)=22
\left(x-3\right)\left(x+3\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}। 3 ਦਾ ਵਰਗ ਕਰੋ।
2x^{2}+2x+5-x^{2}+9=22
x^{2}-9 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
x^{2}+2x+5+9=22
x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
x^{2}+2x+14=22
14 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 9 ਨੂੰ ਜੋੜੋ।
x^{2}+2x+14-22=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 22 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}+2x-8=0
-8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 14 ਵਿੱਚੋਂ 22 ਨੂੰ ਘਟਾ ਦਿਓ।
a+b=2 ab=1\left(-8\right)=-8
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ x^{2}+ax+bx-8 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,8 -2,4
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, ਪਾਜ਼ੇਟਿਵ ਨੰਬਰ ਦੀ ਨੈਗੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -8 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1+8=7 -2+4=2
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-2 b=4
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 2 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(x^{2}-2x\right)+\left(4x-8\right)
x^{2}+2x-8 ਨੂੰ \left(x^{2}-2x\right)+\left(4x-8\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
x\left(x-2\right)+4\left(x-2\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 4 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(x-2\right)\left(x+4\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x-2 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=2 x=-4
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x-2=0 ਅਤੇ x+4=0 ਨੂੰ ਹੱਲ ਕਰੋ।
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
\left(x-1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
\left(x+2\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ x^{2} ਨੂੰ ਮਿਲਾਓ।
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
2x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2x ਅਤੇ 4x ਨੂੰ ਮਿਲਾਓ।
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 4 ਨੂੰ ਜੋੜੋ।
2x^{2}+2x+5-\left(x^{2}-9\right)=22
\left(x-3\right)\left(x+3\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}। 3 ਦਾ ਵਰਗ ਕਰੋ।
2x^{2}+2x+5-x^{2}+9=22
x^{2}-9 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
x^{2}+2x+5+9=22
x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
x^{2}+2x+14=22
14 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 9 ਨੂੰ ਜੋੜੋ।
x^{2}+2x+14-22=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 22 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}+2x-8=0
-8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 14 ਵਿੱਚੋਂ 22 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{-2±\sqrt{2^{2}-4\left(-8\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, 2 ਨੂੰ b ਲਈ, ਅਤੇ -8 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-2±\sqrt{4-4\left(-8\right)}}{2}
2 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-2±\sqrt{4+32}}{2}
-4 ਨੂੰ -8 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-2±\sqrt{36}}{2}
4 ਨੂੰ 32 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-2±6}{2}
36 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{4}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-2±6}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -2 ਨੂੰ 6 ਵਿੱਚ ਜੋੜੋ।
x=2
4 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{8}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-2±6}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -2 ਵਿੱਚੋਂ 6 ਨੂੰ ਘਟਾਓ।
x=-4
-8 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=2 x=-4
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
\left(x-1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
\left(x+2\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ x^{2} ਨੂੰ ਮਿਲਾਓ।
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
2x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2x ਅਤੇ 4x ਨੂੰ ਮਿਲਾਓ।
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 4 ਨੂੰ ਜੋੜੋ।
2x^{2}+2x+5-\left(x^{2}-9\right)=22
\left(x-3\right)\left(x+3\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}। 3 ਦਾ ਵਰਗ ਕਰੋ।
2x^{2}+2x+5-x^{2}+9=22
x^{2}-9 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
x^{2}+2x+5+9=22
x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
x^{2}+2x+14=22
14 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 9 ਨੂੰ ਜੋੜੋ।
x^{2}+2x=22-14
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 14 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}+2x=8
8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 22 ਵਿੱਚੋਂ 14 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}+2x+1^{2}=8+1^{2}
2, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 1 ਨਿਕਲੇ। ਫੇਰ, 1 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+2x+1=8+1
1 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}+2x+1=9
8 ਨੂੰ 1 ਵਿੱਚ ਜੋੜੋ।
\left(x+1\right)^{2}=9
ਫੈਕਟਰ x^{2}+2x+1। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+1=3 x+1=-3
ਸਪਸ਼ਟ ਕਰੋ।
x=2 x=-4
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}