x ਲਈ ਹਲ ਕਰੋ
x=7
x=0
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
x=\frac{x^{2}-2x}{5}
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
x=\frac{1}{5}x^{2}-\frac{2}{5}x
x^{2}-2x ਦੇ ਹਰ ਅੰਕ ਨੂੰ 5 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{5}x^{2}-\frac{2}{5}x ਨਿਕਲੇ।
x-\frac{1}{5}x^{2}=-\frac{2}{5}x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{1}{5}x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
x-\frac{1}{5}x^{2}+\frac{2}{5}x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{2}{5}x ਜੋੜੋ।
\frac{7}{5}x-\frac{1}{5}x^{2}=0
\frac{7}{5}x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ \frac{2}{5}x ਨੂੰ ਮਿਲਾਓ।
x\left(\frac{7}{5}-\frac{1}{5}x\right)=0
x ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
x=0 x=7
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x=0 ਅਤੇ \frac{7-x}{5}=0 ਨੂੰ ਹੱਲ ਕਰੋ।
x=\frac{x^{2}-2x}{5}
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
x=\frac{1}{5}x^{2}-\frac{2}{5}x
x^{2}-2x ਦੇ ਹਰ ਅੰਕ ਨੂੰ 5 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{5}x^{2}-\frac{2}{5}x ਨਿਕਲੇ।
x-\frac{1}{5}x^{2}=-\frac{2}{5}x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{1}{5}x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
x-\frac{1}{5}x^{2}+\frac{2}{5}x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{2}{5}x ਜੋੜੋ।
\frac{7}{5}x-\frac{1}{5}x^{2}=0
\frac{7}{5}x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ \frac{2}{5}x ਨੂੰ ਮਿਲਾਓ।
-\frac{1}{5}x^{2}+\frac{7}{5}x=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\frac{7}{5}±\sqrt{\left(\frac{7}{5}\right)^{2}}}{2\left(-\frac{1}{5}\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -\frac{1}{5} ਨੂੰ a ਲਈ, \frac{7}{5} ਨੂੰ b ਲਈ, ਅਤੇ 0 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\frac{7}{5}±\frac{7}{5}}{2\left(-\frac{1}{5}\right)}
\left(\frac{7}{5}\right)^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-\frac{7}{5}±\frac{7}{5}}{-\frac{2}{5}}
2 ਨੂੰ -\frac{1}{5} ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0}{-\frac{2}{5}}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-\frac{7}{5}±\frac{7}{5}}{-\frac{2}{5}} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{7}{5} ਨੂੰ \frac{7}{5} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
x=0
0 ਨੂੰ -\frac{2}{5} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 0ਨੂੰ -\frac{2}{5} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{\frac{14}{5}}{-\frac{2}{5}}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-\frac{7}{5}±\frac{7}{5}}{-\frac{2}{5}} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। ਸਾਂਝਾ ਡੀਨੋਮਿਨੇਟਰ ਕੱਢ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਘਟਾ ਕੇ -\frac{7}{5} ਵਿੱਚੋਂ \frac{7}{5} ਨੂੰ ਘਟਾ ਦਿਓ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
x=7
-\frac{14}{5} ਨੂੰ -\frac{2}{5} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ -\frac{14}{5}ਨੂੰ -\frac{2}{5} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=0 x=7
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x=\frac{x^{2}-2x}{5}
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
x=\frac{1}{5}x^{2}-\frac{2}{5}x
x^{2}-2x ਦੇ ਹਰ ਅੰਕ ਨੂੰ 5 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{5}x^{2}-\frac{2}{5}x ਨਿਕਲੇ।
x-\frac{1}{5}x^{2}=-\frac{2}{5}x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{1}{5}x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
x-\frac{1}{5}x^{2}+\frac{2}{5}x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{2}{5}x ਜੋੜੋ।
\frac{7}{5}x-\frac{1}{5}x^{2}=0
\frac{7}{5}x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ \frac{2}{5}x ਨੂੰ ਮਿਲਾਓ।
-\frac{1}{5}x^{2}+\frac{7}{5}x=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-\frac{1}{5}x^{2}+\frac{7}{5}x}{-\frac{1}{5}}=\frac{0}{-\frac{1}{5}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -5 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}+\frac{\frac{7}{5}}{-\frac{1}{5}}x=\frac{0}{-\frac{1}{5}}
-\frac{1}{5} ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -\frac{1}{5} ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-7x=\frac{0}{-\frac{1}{5}}
\frac{7}{5} ਨੂੰ -\frac{1}{5} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{7}{5}ਨੂੰ -\frac{1}{5} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-7x=0
0 ਨੂੰ -\frac{1}{5} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 0ਨੂੰ -\frac{1}{5} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=\left(-\frac{7}{2}\right)^{2}
-7, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{7}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{7}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-7x+\frac{49}{4}=\frac{49}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{7}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
\left(x-\frac{7}{2}\right)^{2}=\frac{49}{4}
ਫੈਕਟਰ x^{2}-7x+\frac{49}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{7}{2}=\frac{7}{2} x-\frac{7}{2}=-\frac{7}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=7 x=0
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{7}{2} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}