ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

x^{2}-x^{4}+42-36=x^{4}+12x^{2}
x^{2}+6 ਨੂੰ 7-x^{2} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
x^{2}-x^{4}+6=x^{4}+12x^{2}
6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 42 ਵਿੱਚੋਂ 36 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-x^{4}+6-x^{4}=12x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{4} ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-2x^{4}+6=12x^{2}
-2x^{4} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -x^{4} ਅਤੇ -x^{4} ਨੂੰ ਮਿਲਾਓ।
x^{2}-2x^{4}+6-12x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 12x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-11x^{2}-2x^{4}+6=0
-11x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -12x^{2} ਨੂੰ ਮਿਲਾਓ।
-2t^{2}-11t+6=0
t ਨੂੰ x^{2} ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
t=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-2\right)\times 6}}{-2\times 2}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ -2 ਨੂੰ a ਦੇ ਨਾਲ, -11 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ 6 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
t=\frac{11±13}{-4}
ਗਣਨਾਵਾਂ ਕਰੋ।
t=-6 t=\frac{1}{2}
t=\frac{11±13}{-4} ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
x=-\sqrt{6}i x=\sqrt{6}i x=-\frac{\sqrt{2}}{2} x=\frac{\sqrt{2}}{2}
ਕਿਉਂਕਿ x=t^{2} ਹੈ, ਹਰ t ਲਈ x=±\sqrt{t} ਦਾ ਮੁਲਾਂਕਣ ਕਰਕੇ ਹੱਲ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।
x^{2}-x^{4}+42-36=x^{4}+12x^{2}
x^{2}+6 ਨੂੰ 7-x^{2} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
x^{2}-x^{4}+6=x^{4}+12x^{2}
6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 42 ਵਿੱਚੋਂ 36 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-x^{4}+6-x^{4}=12x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{4} ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-2x^{4}+6=12x^{2}
-2x^{4} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -x^{4} ਅਤੇ -x^{4} ਨੂੰ ਮਿਲਾਓ।
x^{2}-2x^{4}+6-12x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 12x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-11x^{2}-2x^{4}+6=0
-11x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -12x^{2} ਨੂੰ ਮਿਲਾਓ।
-2t^{2}-11t+6=0
t ਨੂੰ x^{2} ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
t=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-2\right)\times 6}}{-2\times 2}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ -2 ਨੂੰ a ਦੇ ਨਾਲ, -11 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ 6 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
t=\frac{11±13}{-4}
ਗਣਨਾਵਾਂ ਕਰੋ।
t=-6 t=\frac{1}{2}
t=\frac{11±13}{-4} ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
x=\frac{\sqrt{2}}{2} x=-\frac{\sqrt{2}}{2}
ਕਿਉਂਕਿ x=t^{2} ਹੈ, ਪਾਜ਼ੇਟਿਵ t ਲਈ x=±\sqrt{t} ਦਾ ਮੁਲਾਂਕਣ ਕਰਕੇ ਹੱਲ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।