m ਲਈ ਹਲ ਕਰੋ
m=-\frac{x\left(x+2\right)}{x+3}
x\neq -3
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=\frac{\sqrt{m^{2}-8m+4}}{2}-\frac{m}{2}-1
x=-\frac{\sqrt{m^{2}-8m+4}}{2}-\frac{m}{2}-1
x ਲਈ ਹਲ ਕਰੋ
x=\frac{\sqrt{m^{2}-8m+4}}{2}-\frac{m}{2}-1
x=-\frac{\sqrt{m^{2}-8m+4}}{2}-\frac{m}{2}-1\text{, }m\geq 2\sqrt{3}+4\text{ or }m\leq 4-2\sqrt{3}
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
x^{2}+xm+3x+3m=x
x+3 ਨੂੰ x+m ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
xm+3x+3m=x-x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
xm+3m=x-x^{2}-3x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3x ਨੂੰ ਘਟਾ ਦਿਓ।
xm+3m=-2x-x^{2}
-2x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ -3x ਨੂੰ ਮਿਲਾਓ।
\left(x+3\right)m=-2x-x^{2}
m ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\left(x+3\right)m=-x^{2}-2x
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(x+3\right)m}{x+3}=-\frac{x\left(x+2\right)}{x+3}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x+3 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
m=-\frac{x\left(x+2\right)}{x+3}
x+3 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ x+3 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}