x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=1
x=-3
x ਲਈ ਹਲ ਕਰੋ
x=1
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
x\sqrt{x-1}+3\sqrt{x-1}=0
x+3 ਨੂੰ \sqrt{x-1} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x\sqrt{x-1}=-3\sqrt{x-1}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3\sqrt{x-1} ਨੂੰ ਘਟਾਓ।
\left(x\sqrt{x-1}\right)^{2}=\left(-3\sqrt{x-1}\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
x^{2}\left(\sqrt{x-1}\right)^{2}=\left(-3\sqrt{x-1}\right)^{2}
\left(x\sqrt{x-1}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
x^{2}\left(x-1\right)=\left(-3\sqrt{x-1}\right)^{2}
\sqrt{x-1} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ x-1 ਪ੍ਰਾਪਤ ਕਰੋ।
x^{3}-x^{2}=\left(-3\sqrt{x-1}\right)^{2}
x^{2} ਨੂੰ x-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{3}-x^{2}=\left(-3\right)^{2}\left(\sqrt{x-1}\right)^{2}
\left(-3\sqrt{x-1}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
x^{3}-x^{2}=9\left(\sqrt{x-1}\right)^{2}
-3 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 9 ਪ੍ਰਾਪਤ ਕਰੋ।
x^{3}-x^{2}=9\left(x-1\right)
\sqrt{x-1} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ x-1 ਪ੍ਰਾਪਤ ਕਰੋ।
x^{3}-x^{2}=9x-9
9 ਨੂੰ x-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{3}-x^{2}-9x=-9
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 9x ਨੂੰ ਘਟਾ ਦਿਓ।
x^{3}-x^{2}-9x+9=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 9 ਜੋੜੋ।
±9,±3,±1
ਰੈਸ਼ਨਲ ਰੂਟ ਥਿਓਰਮ ਦੇ ਮੁਤਾਬਕ, ਪੋਲੀਨੋਮਿਅਲ ਦੇ ਸਾਰੇ ਰੈਸ਼ਨਲ ਰੂਟ \frac{p}{q} ਰੂਪ ਵਿੱਚ ਹੁੰਦੇ ਹਨ, ਜਿੱਥੇ p ਸਥਿਰ ਟਰਮ 9 ਦੇ ਨਾਲ ਤਕਸੀਮ ਹੁੰਦਾ ਹੈ ਅਤੇ q ਆਉਣ ਵਾਲੇ ਕੋਫੀਸ਼ਿਏਂਟ 1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਹੁੰਦਾ ਹੈ। ਸਾਰੇ ਉਮੀਦਵਾਰਾਂ \frac{p}{q} ਦੀ ਸੂਚੀ ਬਣਾਓ।
x=1
ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਦੁਆਰਾ ਸਭ ਤੋਂ ਛੋਟੇ ਦੇ ਨਾਲ ਸ਼ੁਰੂ ਕਰਦਿਆਂ, ਸਾਰੀਆਂ ਪੂਰਣ ਅੰਕ ਵੈਲਯੂਜ਼ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਕੇ ਅਜਿਹਾ ਇੱਕ ਮੂਲ ਕੱਢੋ। ਜੇ ਕੋਈ ਪੂਰਣ ਅੰਕ ਮੂਲ ਨਹੀਂ ਮਿਲਦੇ ਹਨ, ਤਾਂ ਫ੍ਰੈਕਸ਼ਨਾਂ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ।
x^{2}-9=0
ਫੈਕਟਰ ਥਿਓਰਮ ਦੁਆਰਾ, x-k ਹਰ ਰੂਟ k ਲਈ ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਇੱਕ ਫੈਕਟਰ ਹੁੰਦਾ ਹੈ। x^{3}-x^{2}-9x+9 ਨੂੰ x-1 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ x^{2}-9 ਨਿਕਲੇ। ਸਮੀਕਰਨ ਹੱਲ ਕਰੋ ਜਿੱਥੇ ਪਰਿਣਾਮ 0 ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ।
x=\frac{0±\sqrt{0^{2}-4\times 1\left(-9\right)}}{2}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ 1 ਨੂੰ a ਦੇ ਨਾਲ, 0 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ -9 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
x=\frac{0±6}{2}
ਗਣਨਾਵਾਂ ਕਰੋ।
x=-3 x=3
x^{2}-9=0 ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
x=1 x=-3 x=3
ਸਾਰੇ ਲੱਭੇ ਸਮਾਧਾਨਾਂ ਦੀ ਸੂਚੀ ਬਣਾਓ।
\left(1+3\right)\sqrt{1-1}=0
ਸਮੀਕਰਨ \left(x+3\right)\sqrt{x-1}=0 ਵਿੱਚ, x ਲਈ 1 ਨੂੰ ਬਦਲ ਦਿਓ।
0=0
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=1 ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
\left(-3+3\right)\sqrt{-3-1}=0
ਸਮੀਕਰਨ \left(x+3\right)\sqrt{x-1}=0 ਵਿੱਚ, x ਲਈ -3 ਨੂੰ ਬਦਲ ਦਿਓ।
0=0
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=-3 ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
\left(3+3\right)\sqrt{3-1}=0
ਸਮੀਕਰਨ \left(x+3\right)\sqrt{x-1}=0 ਵਿੱਚ, x ਲਈ 3 ਨੂੰ ਬਦਲ ਦਿਓ।
6\times 2^{\frac{1}{2}}=0
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=3 ਸਮੀਕਰਨ ਨੂੰ ਸਤੁੰਸ਼ਟ ਨਹੀਂ ਕਰਦਾ ਹੈ।
x=1 x=-3
\sqrt{x-1}x=-3\sqrt{x-1} ਦੇ ਸਾਰੇ ਹੱਲਾਂ ਦੀ ਸੂਚੀ।
x\sqrt{x-1}+3\sqrt{x-1}=0
x+3 ਨੂੰ \sqrt{x-1} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x\sqrt{x-1}=-3\sqrt{x-1}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3\sqrt{x-1} ਨੂੰ ਘਟਾਓ।
\left(x\sqrt{x-1}\right)^{2}=\left(-3\sqrt{x-1}\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
x^{2}\left(\sqrt{x-1}\right)^{2}=\left(-3\sqrt{x-1}\right)^{2}
\left(x\sqrt{x-1}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
x^{2}\left(x-1\right)=\left(-3\sqrt{x-1}\right)^{2}
\sqrt{x-1} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ x-1 ਪ੍ਰਾਪਤ ਕਰੋ।
x^{3}-x^{2}=\left(-3\sqrt{x-1}\right)^{2}
x^{2} ਨੂੰ x-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{3}-x^{2}=\left(-3\right)^{2}\left(\sqrt{x-1}\right)^{2}
\left(-3\sqrt{x-1}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
x^{3}-x^{2}=9\left(\sqrt{x-1}\right)^{2}
-3 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 9 ਪ੍ਰਾਪਤ ਕਰੋ।
x^{3}-x^{2}=9\left(x-1\right)
\sqrt{x-1} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ x-1 ਪ੍ਰਾਪਤ ਕਰੋ।
x^{3}-x^{2}=9x-9
9 ਨੂੰ x-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{3}-x^{2}-9x=-9
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 9x ਨੂੰ ਘਟਾ ਦਿਓ।
x^{3}-x^{2}-9x+9=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 9 ਜੋੜੋ।
±9,±3,±1
ਰੈਸ਼ਨਲ ਰੂਟ ਥਿਓਰਮ ਦੇ ਮੁਤਾਬਕ, ਪੋਲੀਨੋਮਿਅਲ ਦੇ ਸਾਰੇ ਰੈਸ਼ਨਲ ਰੂਟ \frac{p}{q} ਰੂਪ ਵਿੱਚ ਹੁੰਦੇ ਹਨ, ਜਿੱਥੇ p ਸਥਿਰ ਟਰਮ 9 ਦੇ ਨਾਲ ਤਕਸੀਮ ਹੁੰਦਾ ਹੈ ਅਤੇ q ਆਉਣ ਵਾਲੇ ਕੋਫੀਸ਼ਿਏਂਟ 1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਹੁੰਦਾ ਹੈ। ਸਾਰੇ ਉਮੀਦਵਾਰਾਂ \frac{p}{q} ਦੀ ਸੂਚੀ ਬਣਾਓ।
x=1
ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਦੁਆਰਾ ਸਭ ਤੋਂ ਛੋਟੇ ਦੇ ਨਾਲ ਸ਼ੁਰੂ ਕਰਦਿਆਂ, ਸਾਰੀਆਂ ਪੂਰਣ ਅੰਕ ਵੈਲਯੂਜ਼ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਕੇ ਅਜਿਹਾ ਇੱਕ ਮੂਲ ਕੱਢੋ। ਜੇ ਕੋਈ ਪੂਰਣ ਅੰਕ ਮੂਲ ਨਹੀਂ ਮਿਲਦੇ ਹਨ, ਤਾਂ ਫ੍ਰੈਕਸ਼ਨਾਂ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ।
x^{2}-9=0
ਫੈਕਟਰ ਥਿਓਰਮ ਦੁਆਰਾ, x-k ਹਰ ਰੂਟ k ਲਈ ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਇੱਕ ਫੈਕਟਰ ਹੁੰਦਾ ਹੈ। x^{3}-x^{2}-9x+9 ਨੂੰ x-1 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ x^{2}-9 ਨਿਕਲੇ। ਸਮੀਕਰਨ ਹੱਲ ਕਰੋ ਜਿੱਥੇ ਪਰਿਣਾਮ 0 ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ।
x=\frac{0±\sqrt{0^{2}-4\times 1\left(-9\right)}}{2}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ 1 ਨੂੰ a ਦੇ ਨਾਲ, 0 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ -9 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
x=\frac{0±6}{2}
ਗਣਨਾਵਾਂ ਕਰੋ।
x=-3 x=3
x^{2}-9=0 ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
x=1 x=-3 x=3
ਸਾਰੇ ਲੱਭੇ ਸਮਾਧਾਨਾਂ ਦੀ ਸੂਚੀ ਬਣਾਓ।
\left(1+3\right)\sqrt{1-1}=0
ਸਮੀਕਰਨ \left(x+3\right)\sqrt{x-1}=0 ਵਿੱਚ, x ਲਈ 1 ਨੂੰ ਬਦਲ ਦਿਓ।
0=0
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=1 ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
\left(-3+3\right)\sqrt{-3-1}=0
ਸਮੀਕਰਨ \left(x+3\right)\sqrt{x-1}=0 ਵਿੱਚ, x ਲਈ -3 ਨੂੰ ਬਦਲ ਦਿਓ। ਵਿਅੰਜਕ \sqrt{-3-1} ਨਿਸ਼ਚਤ ਨਹੀਂ ਹੈ ਕਿਉਂਕਿ ਇਸ ਨੂੰ ਰੈਡੀਕੈਂਡ ਰਿਣਾਤਮਕ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ।
\left(3+3\right)\sqrt{3-1}=0
ਸਮੀਕਰਨ \left(x+3\right)\sqrt{x-1}=0 ਵਿੱਚ, x ਲਈ 3 ਨੂੰ ਬਦਲ ਦਿਓ।
6\times 2^{\frac{1}{2}}=0
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=3 ਸਮੀਕਰਨ ਨੂੰ ਸਤੁੰਸ਼ਟ ਨਹੀਂ ਕਰਦਾ ਹੈ।
x=1
ਸਮੀਕਰਨ \sqrt{x-1}x=-3\sqrt{x-1} ਦਾ ਇੱਕ ਅਨੋਖਾ ਹਲ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}