ਮੁਲਾਂਕਣ ਕਰੋ
\frac{\left(x-2\right)\left(x+3\right)}{x-1}
ਅੰਤਰ ਦੱਸੋ w.r.t. x
\frac{x^{2}-2x+5}{\left(x-1\right)^{2}}
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{\left(x+2\right)\left(x-1\right)}{x-1}-\frac{4}{x-1}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। x+2 ਨੂੰ \frac{x-1}{x-1} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\left(x+2\right)\left(x-1\right)-4}{x-1}
ਕਿਉਂਕਿ \frac{\left(x+2\right)\left(x-1\right)}{x-1} ਅਤੇ \frac{4}{x-1} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{x^{2}-x+2x-2-4}{x-1}
\left(x+2\right)\left(x-1\right)-4 ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{x^{2}+x-6}{x-1}
x^{2}-x+2x-2-4 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x+2\right)\left(x-1\right)}{x-1}-\frac{4}{x-1})
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। x+2 ਨੂੰ \frac{x-1}{x-1} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x+2\right)\left(x-1\right)-4}{x-1})
ਕਿਉਂਕਿ \frac{\left(x+2\right)\left(x-1\right)}{x-1} ਅਤੇ \frac{4}{x-1} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}-x+2x-2-4}{x-1})
\left(x+2\right)\left(x-1\right)-4 ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+x-6}{x-1})
x^{2}-x+2x-2-4 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\left(x^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1}-6)-\left(x^{2}+x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-1)}{\left(x^{1}-1\right)^{2}}
ਅੰਤਰ ਕੱਢਣ ਯੋਗ ਕਿਸੇ ਦੋ ਫੰਗਸ਼ਨ ਲਈ, ਦੋ ਫੰਗਸ਼ਨਾਂ ਦੇ ਭਾਗਫਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਨਿਉਮਰੇਟਰ ਦੇ ਡੈਰੀਵੇਟਿਵ ਨਾਲ ਗੁਣਾ ਕਰਕੇ, - ਨਿਉਮਰੇਟਰ ਨੂੰ ਡੀਨੋਮਿਨੇਟਰ ਨਾਲ ਗੁਣਾ ਕਰਕੇ, ਸਾਰੇ ਵਰਗ ਵਿੱਚ ਰੱਖੇ ਡੀਨੋਮਿਨੇਟਰ ਨਾਲ ਤਕਸੀਮ ਕਰਕੇ ਨਿਕਲਦਾ ਹੈ।
\frac{\left(x^{1}-1\right)\left(2x^{2-1}+x^{1-1}\right)-\left(x^{2}+x^{1}-6\right)x^{1-1}}{\left(x^{1}-1\right)^{2}}
ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਇਸ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਡੈਰੀਵੇਟਿਵਸ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਸਥਿਰ ਸੰਖਿਆ ਦਾ ਡੈਰੀਵੇਟਿਵ 0 ਹੁੰਦਾ ਹੈ। ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
\frac{\left(x^{1}-1\right)\left(2x^{1}+x^{0}\right)-\left(x^{2}+x^{1}-6\right)x^{0}}{\left(x^{1}-1\right)^{2}}
ਸਪਸ਼ਟ ਕਰੋ।
\frac{x^{1}\times 2x^{1}+x^{1}x^{0}-2x^{1}-x^{0}-\left(x^{2}+x^{1}-6\right)x^{0}}{\left(x^{1}-1\right)^{2}}
x^{1}-1 ਨੂੰ 2x^{1}+x^{0} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{x^{1}\times 2x^{1}+x^{1}x^{0}-2x^{1}-x^{0}-\left(x^{2}x^{0}+x^{1}x^{0}-6x^{0}\right)}{\left(x^{1}-1\right)^{2}}
x^{2}+x^{1}-6 ਨੂੰ x^{0} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{2x^{1+1}+x^{1}-2x^{1}-x^{0}-\left(x^{2}+x^{1}-6x^{0}\right)}{\left(x^{1}-1\right)^{2}}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ।
\frac{2x^{2}+x^{1}-2x^{1}-x^{0}-\left(x^{2}+x^{1}-6x^{0}\right)}{\left(x^{1}-1\right)^{2}}
ਸਪਸ਼ਟ ਕਰੋ।
\frac{x^{2}-2x^{1}+5x^{0}}{\left(x^{1}-1\right)^{2}}
ਇੱਕ-ਸਮਾਨ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\frac{x^{2}-2x+5x^{0}}{\left(x-1\right)^{2}}
ਕਿਸੇ t, t^{1}=t ਸੰਖਿਆ ਲਈ।
\frac{x^{2}-2x+5\times 1}{\left(x-1\right)^{2}}
ਕਿਸੇ ਵੀ t ਸੰਖਿਆ ਲਈ, 0, t^{0}=1 ਨੂੰ ਛੱਡ ਕੇ।
\frac{x^{2}-2x+5}{\left(x-1\right)^{2}}
ਕਿਸੇ ਸੰਖਿਆ t, t\times 1=t ਅਤੇ 1t=t ਲਈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}