ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਅੰਤਰ ਦੱਸੋ w.r.t. a
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\left(\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{b^{2}}{a+b}\right)\times \frac{a+b}{a}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। a-b ਨੂੰ \frac{a+b}{a+b} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\left(a-b\right)\left(a+b\right)+b^{2}}{a+b}\times \frac{a+b}{a}
ਕਿਉਂਕਿ \frac{\left(a-b\right)\left(a+b\right)}{a+b} ਅਤੇ \frac{b^{2}}{a+b} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{a^{2}+ab-ba-b^{2}+b^{2}}{a+b}\times \frac{a+b}{a}
\left(a-b\right)\left(a+b\right)+b^{2} ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{a^{2}}{a+b}\times \frac{a+b}{a}
a^{2}+ab-ba-b^{2}+b^{2} ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{a^{2}\left(a+b\right)}{\left(a+b\right)a}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{a^{2}}{a+b} ਟਾਈਮਸ \frac{a+b}{a} ਨੂੰ ਗੁਣਾ ਕਰੋ।
a
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ a\left(a+b\right) ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}a}(\left(\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{b^{2}}{a+b}\right)\times \frac{a+b}{a})
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। a-b ਨੂੰ \frac{a+b}{a+b} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a-b\right)\left(a+b\right)+b^{2}}{a+b}\times \frac{a+b}{a})
ਕਿਉਂਕਿ \frac{\left(a-b\right)\left(a+b\right)}{a+b} ਅਤੇ \frac{b^{2}}{a+b} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}+ab-ba-b^{2}+b^{2}}{a+b}\times \frac{a+b}{a})
\left(a-b\right)\left(a+b\right)+b^{2} ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}}{a+b}\times \frac{a+b}{a})
a^{2}+ab-ba-b^{2}+b^{2} ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}\left(a+b\right)}{\left(a+b\right)a})
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{a^{2}}{a+b} ਟਾਈਮਸ \frac{a+b}{a} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}a}(a)
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ a\left(a+b\right) ਨੂੰ ਰੱਦ ਕਰੋ।
a^{1-1}
ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
a^{0}
1 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾਓ।
1
ਕਿਸੇ ਵੀ t ਸੰਖਿਆ ਲਈ, 0, t^{0}=1 ਨੂੰ ਛੱਡ ਕੇ।