ਮੁਲਾਂਕਣ ਕਰੋ
-16\left(ab\right)^{2}
ਵਿਸਤਾਰ ਕਰੋ
-16\left(ab\right)^{2}
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(a^{2}-4ab+4b^{2}\right)\left(a+2b\right)^{2}-\left(a^{2}+4b^{2}\right)^{2}
\left(a-2b\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
\left(a^{2}-4ab+4b^{2}\right)\left(a^{2}+4ab+4b^{2}\right)-\left(a^{2}+4b^{2}\right)^{2}
\left(a+2b\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(p+q\right)^{2}=p^{2}+2pq+q^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{2}+4b^{2}\right)^{2}
a^{2}-4ab+4b^{2} ਨੂੰ a^{2}+4ab+4b^{2} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
a^{4}-8a^{2}b^{2}+16b^{4}-\left(\left(a^{2}\right)^{2}+8a^{2}b^{2}+16\left(b^{2}\right)^{2}\right)
\left(a^{2}+4b^{2}\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(p+q\right)^{2}=p^{2}+2pq+q^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{4}+8a^{2}b^{2}+16\left(b^{2}\right)^{2}\right)
ਕਿਸੇ ਹੋਰ ਨੰਬਰ ਦੀ ਪਾਵਰ ਨੂੰ ਵਧਾਉਣ ਲਈ, ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਗੁਣਾ ਕਰੋ। 4 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{4}+8a^{2}b^{2}+16b^{4}\right)
ਕਿਸੇ ਹੋਰ ਨੰਬਰ ਦੀ ਪਾਵਰ ਨੂੰ ਵਧਾਉਣ ਲਈ, ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਗੁਣਾ ਕਰੋ। 4 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
a^{4}-8a^{2}b^{2}+16b^{4}-a^{4}-8a^{2}b^{2}-16b^{4}
a^{4}+8a^{2}b^{2}+16b^{4} ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-8a^{2}b^{2}+16b^{4}-8a^{2}b^{2}-16b^{4}
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ a^{4} ਅਤੇ -a^{4} ਨੂੰ ਮਿਲਾਓ।
-16a^{2}b^{2}+16b^{4}-16b^{4}
-16a^{2}b^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -8a^{2}b^{2} ਅਤੇ -8a^{2}b^{2} ਨੂੰ ਮਿਲਾਓ।
-16a^{2}b^{2}
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 16b^{4} ਅਤੇ -16b^{4} ਨੂੰ ਮਿਲਾਓ।
\left(a^{2}-4ab+4b^{2}\right)\left(a+2b\right)^{2}-\left(a^{2}+4b^{2}\right)^{2}
\left(a-2b\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
\left(a^{2}-4ab+4b^{2}\right)\left(a^{2}+4ab+4b^{2}\right)-\left(a^{2}+4b^{2}\right)^{2}
\left(a+2b\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(p+q\right)^{2}=p^{2}+2pq+q^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{2}+4b^{2}\right)^{2}
a^{2}-4ab+4b^{2} ਨੂੰ a^{2}+4ab+4b^{2} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
a^{4}-8a^{2}b^{2}+16b^{4}-\left(\left(a^{2}\right)^{2}+8a^{2}b^{2}+16\left(b^{2}\right)^{2}\right)
\left(a^{2}+4b^{2}\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(p+q\right)^{2}=p^{2}+2pq+q^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{4}+8a^{2}b^{2}+16\left(b^{2}\right)^{2}\right)
ਕਿਸੇ ਹੋਰ ਨੰਬਰ ਦੀ ਪਾਵਰ ਨੂੰ ਵਧਾਉਣ ਲਈ, ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਗੁਣਾ ਕਰੋ। 4 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{4}+8a^{2}b^{2}+16b^{4}\right)
ਕਿਸੇ ਹੋਰ ਨੰਬਰ ਦੀ ਪਾਵਰ ਨੂੰ ਵਧਾਉਣ ਲਈ, ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਗੁਣਾ ਕਰੋ। 4 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
a^{4}-8a^{2}b^{2}+16b^{4}-a^{4}-8a^{2}b^{2}-16b^{4}
a^{4}+8a^{2}b^{2}+16b^{4} ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-8a^{2}b^{2}+16b^{4}-8a^{2}b^{2}-16b^{4}
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ a^{4} ਅਤੇ -a^{4} ਨੂੰ ਮਿਲਾਓ।
-16a^{2}b^{2}+16b^{4}-16b^{4}
-16a^{2}b^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -8a^{2}b^{2} ਅਤੇ -8a^{2}b^{2} ਨੂੰ ਮਿਲਾਓ।
-16a^{2}b^{2}
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 16b^{4} ਅਤੇ -16b^{4} ਨੂੰ ਮਿਲਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}