ਮੁਲਾਂਕਣ ਕਰੋ
1
ਫੈਕਟਰ
1
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(a+y\right)^{2}-4-\left(a-y\right)^{2}-4\left(ay-1\right)+1
\left(a+y-2\right)\left(a+y+2\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}, ਜਿੱਥੇ a=a+y ਅਤੇ b=2। 2 ਦਾ ਵਰਗ ਕਰੋ।
a^{2}+2ay+y^{2}-4-\left(a-y\right)^{2}-4\left(ay-1\right)+1
\left(a+y\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(p+q\right)^{2}=p^{2}+2pq+q^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
a^{2}+2ay+y^{2}-4-\left(a^{2}-2ay+y^{2}\right)-4\left(ay-1\right)+1
\left(a-y\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
a^{2}+2ay+y^{2}-4-a^{2}+2ay-y^{2}-4\left(ay-1\right)+1
a^{2}-2ay+y^{2} ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
2ay+y^{2}-4+2ay-y^{2}-4\left(ay-1\right)+1
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ a^{2} ਅਤੇ -a^{2} ਨੂੰ ਮਿਲਾਓ।
4ay+y^{2}-4-y^{2}-4\left(ay-1\right)+1
4ay ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2ay ਅਤੇ 2ay ਨੂੰ ਮਿਲਾਓ।
4ay-4-4\left(ay-1\right)+1
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ y^{2} ਅਤੇ -y^{2} ਨੂੰ ਮਿਲਾਓ।
4ay-4-4ay+4+1
-4 ਨੂੰ ay-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-4+4+1
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4ay ਅਤੇ -4ay ਨੂੰ ਮਿਲਾਓ।
1
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -4 ਅਤੇ 4 ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}