ਫੈਕਟਰ
\left(u-\left(-\sqrt{2}-3\right)\right)\left(u-\left(\sqrt{2}-3\right)\right)
ਮੁਲਾਂਕਣ ਕਰੋ
u^{2}+6u+7
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
factor(6u+7+u^{2})
7 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
u^{2}+6u+7=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
u=\frac{-6±\sqrt{6^{2}-4\times 7}}{2}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
u=\frac{-6±\sqrt{36-4\times 7}}{2}
6 ਦਾ ਵਰਗ ਕਰੋ।
u=\frac{-6±\sqrt{36-28}}{2}
-4 ਨੂੰ 7 ਵਾਰ ਗੁਣਾ ਕਰੋ।
u=\frac{-6±\sqrt{8}}{2}
36 ਨੂੰ -28 ਵਿੱਚ ਜੋੜੋ।
u=\frac{-6±2\sqrt{2}}{2}
8 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
u=\frac{2\sqrt{2}-6}{2}
ਹੁਣ, ਸਮੀਕਰਨ u=\frac{-6±2\sqrt{2}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -6 ਨੂੰ 2\sqrt{2} ਵਿੱਚ ਜੋੜੋ।
u=\sqrt{2}-3
-6+2\sqrt{2} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
u=\frac{-2\sqrt{2}-6}{2}
ਹੁਣ, ਸਮੀਕਰਨ u=\frac{-6±2\sqrt{2}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -6 ਵਿੱਚੋਂ 2\sqrt{2} ਨੂੰ ਘਟਾਓ।
u=-\sqrt{2}-3
-6-2\sqrt{2} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
u^{2}+6u+7=\left(u-\left(\sqrt{2}-3\right)\right)\left(u-\left(-\sqrt{2}-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ -3+\sqrt{2}ਅਤੇ x_{2} ਲਈ -3-\sqrt{2} ਬਦਲ ਹੈ।
6u+7+u^{2}
7 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}