ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

5x^{2}+6x+5=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-6±\sqrt{6^{2}-4\times 5\times 5}}{2\times 5}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 5 ਨੂੰ a ਲਈ, 6 ਨੂੰ b ਲਈ, ਅਤੇ 5 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-6±\sqrt{36-4\times 5\times 5}}{2\times 5}
6 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-6±\sqrt{36-20\times 5}}{2\times 5}
-4 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-6±\sqrt{36-100}}{2\times 5}
-20 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-6±\sqrt{-64}}{2\times 5}
36 ਨੂੰ -100 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-6±8i}{2\times 5}
-64 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-6±8i}{10}
2 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-6+8i}{10}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-6±8i}{10} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -6 ਨੂੰ 8i ਵਿੱਚ ਜੋੜੋ।
x=-\frac{3}{5}+\frac{4}{5}i
-6+8i ਨੂੰ 10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-6-8i}{10}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-6±8i}{10} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -6 ਵਿੱਚੋਂ 8i ਨੂੰ ਘਟਾਓ।
x=-\frac{3}{5}-\frac{4}{5}i
-6-8i ਨੂੰ 10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{3}{5}+\frac{4}{5}i x=-\frac{3}{5}-\frac{4}{5}i
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
5x^{2}+6x+5=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
5x^{2}+6x+5-5=-5
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5 ਨੂੰ ਘਟਾਓ।
5x^{2}+6x=-5
5 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{5x^{2}+6x}{5}=-\frac{5}{5}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 5 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{6}{5}x=-\frac{5}{5}
5 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 5 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{6}{5}x=-1
-5 ਨੂੰ 5 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=-1+\left(\frac{3}{5}\right)^{2}
\frac{6}{5}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{3}{5} ਨਿਕਲੇ। ਫੇਰ, \frac{3}{5} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{6}{5}x+\frac{9}{25}=-1+\frac{9}{25}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{3}{5} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{6}{5}x+\frac{9}{25}=-\frac{16}{25}
-1 ਨੂੰ \frac{9}{25} ਵਿੱਚ ਜੋੜੋ।
\left(x+\frac{3}{5}\right)^{2}=-\frac{16}{25}
ਫੈਕਟਰ x^{2}+\frac{6}{5}x+\frac{9}{25}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{-\frac{16}{25}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{3}{5}=\frac{4}{5}i x+\frac{3}{5}=-\frac{4}{5}i
ਸਪਸ਼ਟ ਕਰੋ।
x=-\frac{3}{5}+\frac{4}{5}i x=-\frac{3}{5}-\frac{4}{5}i
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{3}{5} ਨੂੰ ਘਟਾਓ।