x ਲਈ ਹਲ ਕਰੋ
x = -\frac{11}{8} = -1\frac{3}{8} = -1.375
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
16x^{2}+48x+36=2x+3
\left(4x+6\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
16x^{2}+48x+36-2x=3
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2x ਨੂੰ ਘਟਾ ਦਿਓ।
16x^{2}+46x+36=3
46x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 48x ਅਤੇ -2x ਨੂੰ ਮਿਲਾਓ।
16x^{2}+46x+36-3=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3 ਨੂੰ ਘਟਾ ਦਿਓ।
16x^{2}+46x+33=0
33 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 36 ਵਿੱਚੋਂ 3 ਨੂੰ ਘਟਾ ਦਿਓ।
a+b=46 ab=16\times 33=528
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ 16x^{2}+ax+bx+33 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,528 2,264 3,176 4,132 6,88 8,66 11,48 12,44 16,33 22,24
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 528 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1+528=529 2+264=266 3+176=179 4+132=136 6+88=94 8+66=74 11+48=59 12+44=56 16+33=49 22+24=46
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=22 b=24
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 46 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(16x^{2}+22x\right)+\left(24x+33\right)
16x^{2}+46x+33 ਨੂੰ \left(16x^{2}+22x\right)+\left(24x+33\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
2x\left(8x+11\right)+3\left(8x+11\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 2x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 3 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(8x+11\right)\left(2x+3\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 8x+11 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=-\frac{11}{8} x=-\frac{3}{2}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, 8x+11=0 ਅਤੇ 2x+3=0 ਨੂੰ ਹੱਲ ਕਰੋ।
16x^{2}+48x+36=2x+3
\left(4x+6\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
16x^{2}+48x+36-2x=3
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2x ਨੂੰ ਘਟਾ ਦਿਓ।
16x^{2}+46x+36=3
46x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 48x ਅਤੇ -2x ਨੂੰ ਮਿਲਾਓ।
16x^{2}+46x+36-3=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3 ਨੂੰ ਘਟਾ ਦਿਓ।
16x^{2}+46x+33=0
33 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 36 ਵਿੱਚੋਂ 3 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{-46±\sqrt{46^{2}-4\times 16\times 33}}{2\times 16}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 16 ਨੂੰ a ਲਈ, 46 ਨੂੰ b ਲਈ, ਅਤੇ 33 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-46±\sqrt{2116-4\times 16\times 33}}{2\times 16}
46 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-46±\sqrt{2116-64\times 33}}{2\times 16}
-4 ਨੂੰ 16 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-46±\sqrt{2116-2112}}{2\times 16}
-64 ਨੂੰ 33 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-46±\sqrt{4}}{2\times 16}
2116 ਨੂੰ -2112 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-46±2}{2\times 16}
4 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-46±2}{32}
2 ਨੂੰ 16 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=-\frac{44}{32}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-46±2}{32} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -46 ਨੂੰ 2 ਵਿੱਚ ਜੋੜੋ।
x=-\frac{11}{8}
4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-44}{32} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=-\frac{48}{32}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-46±2}{32} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -46 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾਓ।
x=-\frac{3}{2}
16 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-48}{32} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=-\frac{11}{8} x=-\frac{3}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
16x^{2}+48x+36=2x+3
\left(4x+6\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
16x^{2}+48x+36-2x=3
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2x ਨੂੰ ਘਟਾ ਦਿਓ।
16x^{2}+46x+36=3
46x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 48x ਅਤੇ -2x ਨੂੰ ਮਿਲਾਓ।
16x^{2}+46x=3-36
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 36 ਨੂੰ ਘਟਾ ਦਿਓ।
16x^{2}+46x=-33
-33 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਵਿੱਚੋਂ 36 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{16x^{2}+46x}{16}=-\frac{33}{16}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 16 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{46}{16}x=-\frac{33}{16}
16 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 16 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{23}{8}x=-\frac{33}{16}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{46}{16} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{23}{8}x+\left(\frac{23}{16}\right)^{2}=-\frac{33}{16}+\left(\frac{23}{16}\right)^{2}
\frac{23}{8}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{23}{16} ਨਿਕਲੇ। ਫੇਰ, \frac{23}{16} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{23}{8}x+\frac{529}{256}=-\frac{33}{16}+\frac{529}{256}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{23}{16} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{23}{8}x+\frac{529}{256}=\frac{1}{256}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{33}{16} ਨੂੰ \frac{529}{256} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{23}{16}\right)^{2}=\frac{1}{256}
ਫੈਕਟਰ x^{2}+\frac{23}{8}x+\frac{529}{256}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{23}{16}\right)^{2}}=\sqrt{\frac{1}{256}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{23}{16}=\frac{1}{16} x+\frac{23}{16}=-\frac{1}{16}
ਸਪਸ਼ਟ ਕਰੋ।
x=-\frac{11}{8} x=-\frac{3}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{23}{16} ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}