ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

9-12x+4x^{2}-\left(5-x\right)\left(5+x\right)=-20
\left(3-2x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
9-12x+4x^{2}-\left(25-x^{2}\right)=-20
\left(5-x\right)\left(5+x\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}। 5 ਦਾ ਵਰਗ ਕਰੋ।
9-12x+4x^{2}-25+x^{2}=-20
25-x^{2} ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-16-12x+4x^{2}+x^{2}=-20
-16 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9 ਵਿੱਚੋਂ 25 ਨੂੰ ਘਟਾ ਦਿਓ।
-16-12x+5x^{2}=-20
5x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x^{2} ਅਤੇ x^{2} ਨੂੰ ਮਿਲਾਓ।
-16-12x+5x^{2}+20=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 20 ਜੋੜੋ।
4-12x+5x^{2}=0
4 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -16 ਅਤੇ 20 ਨੂੰ ਜੋੜੋ।
5x^{2}-12x+4=0
ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖਣ ਲਈ ਇਸ ਨੂੰ ਦੁਬਾਰਾ-ਵਿਵਸਥਿਤ ਕਰੋ। ਸੰਖਿਆਵਾਂ ਨੂੰ ਸਭ ਤੋਂ ਵੱਡੀ ਤੋਂ ਸਭ ਤੋਂ ਛੋਟੀ ਪਾਵਰ ਦੀ ਤਰਤੀਬ ਵਿੱਚ ਲਗਾਓ।
a+b=-12 ab=5\times 4=20
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ 5x^{2}+ax+bx+4 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-20 -2,-10 -4,-5
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 20 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-20=-21 -2-10=-12 -4-5=-9
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-10 b=-2
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -12 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(5x^{2}-10x\right)+\left(-2x+4\right)
5x^{2}-12x+4 ਨੂੰ \left(5x^{2}-10x\right)+\left(-2x+4\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
5x\left(x-2\right)-2\left(x-2\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 5x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -2 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(x-2\right)\left(5x-2\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x-2 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=2 x=\frac{2}{5}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x-2=0 ਅਤੇ 5x-2=0 ਨੂੰ ਹੱਲ ਕਰੋ।
9-12x+4x^{2}-\left(5-x\right)\left(5+x\right)=-20
\left(3-2x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
9-12x+4x^{2}-\left(25-x^{2}\right)=-20
\left(5-x\right)\left(5+x\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}। 5 ਦਾ ਵਰਗ ਕਰੋ।
9-12x+4x^{2}-25+x^{2}=-20
25-x^{2} ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-16-12x+4x^{2}+x^{2}=-20
-16 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9 ਵਿੱਚੋਂ 25 ਨੂੰ ਘਟਾ ਦਿਓ।
-16-12x+5x^{2}=-20
5x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x^{2} ਅਤੇ x^{2} ਨੂੰ ਮਿਲਾਓ।
-16-12x+5x^{2}+20=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 20 ਜੋੜੋ।
4-12x+5x^{2}=0
4 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -16 ਅਤੇ 20 ਨੂੰ ਜੋੜੋ।
5x^{2}-12x+4=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 5\times 4}}{2\times 5}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 5 ਨੂੰ a ਲਈ, -12 ਨੂੰ b ਲਈ, ਅਤੇ 4 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-12\right)±\sqrt{144-4\times 5\times 4}}{2\times 5}
-12 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-12\right)±\sqrt{144-20\times 4}}{2\times 5}
-4 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-12\right)±\sqrt{144-80}}{2\times 5}
-20 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-12\right)±\sqrt{64}}{2\times 5}
144 ਨੂੰ -80 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-12\right)±8}{2\times 5}
64 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{12±8}{2\times 5}
-12 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 12 ਹੈ।
x=\frac{12±8}{10}
2 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{20}{10}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{12±8}{10} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 12 ਨੂੰ 8 ਵਿੱਚ ਜੋੜੋ।
x=2
20 ਨੂੰ 10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{4}{10}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{12±8}{10} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 12 ਵਿੱਚੋਂ 8 ਨੂੰ ਘਟਾਓ।
x=\frac{2}{5}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{4}{10} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=2 x=\frac{2}{5}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
9-12x+4x^{2}-\left(5-x\right)\left(5+x\right)=-20
\left(3-2x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
9-12x+4x^{2}-\left(25-x^{2}\right)=-20
\left(5-x\right)\left(5+x\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}। 5 ਦਾ ਵਰਗ ਕਰੋ।
9-12x+4x^{2}-25+x^{2}=-20
25-x^{2} ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-16-12x+4x^{2}+x^{2}=-20
-16 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9 ਵਿੱਚੋਂ 25 ਨੂੰ ਘਟਾ ਦਿਓ।
-16-12x+5x^{2}=-20
5x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x^{2} ਅਤੇ x^{2} ਨੂੰ ਮਿਲਾਓ।
-12x+5x^{2}=-20+16
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 16 ਜੋੜੋ।
-12x+5x^{2}=-4
-4 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -20 ਅਤੇ 16 ਨੂੰ ਜੋੜੋ।
5x^{2}-12x=-4
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{5x^{2}-12x}{5}=-\frac{4}{5}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 5 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}-\frac{12}{5}x=-\frac{4}{5}
5 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 5 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{12}{5}x+\left(-\frac{6}{5}\right)^{2}=-\frac{4}{5}+\left(-\frac{6}{5}\right)^{2}
-\frac{12}{5}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{6}{5} ਨਿਕਲੇ। ਫੇਰ, -\frac{6}{5} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{12}{5}x+\frac{36}{25}=-\frac{4}{5}+\frac{36}{25}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{6}{5} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{12}{5}x+\frac{36}{25}=\frac{16}{25}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{4}{5} ਨੂੰ \frac{36}{25} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{6}{5}\right)^{2}=\frac{16}{25}
ਫੈਕਟਰ x^{2}-\frac{12}{5}x+\frac{36}{25}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{6}{5}\right)^{2}}=\sqrt{\frac{16}{25}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{6}{5}=\frac{4}{5} x-\frac{6}{5}=-\frac{4}{5}
ਸਪਸ਼ਟ ਕਰੋ।
x=2 x=\frac{2}{5}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{6}{5} ਨੂੰ ਜੋੜੋ।