ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਫੈਕਟਰ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\left(3\sqrt{2}-2\sqrt{3}\right)\left(\sqrt{18}+2\sqrt{3}\right)
12=2^{2}\times 3 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{2^{2}\times 3} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{2^{2}}\sqrt{3} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। 2^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
\left(3\sqrt{2}-2\sqrt{3}\right)\left(3\sqrt{2}+2\sqrt{3}\right)
18=3^{2}\times 2 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{3^{2}\times 2} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{3^{2}}\sqrt{2} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। 3^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}
ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
3^{2}\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}
\left(3\sqrt{2}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
9\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}
3 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 9 ਪ੍ਰਾਪਤ ਕਰੋ।
9\times 2-\left(2\sqrt{3}\right)^{2}
\sqrt{2} ਦਾ ਸਕ੍ਵੇਅਰ 2 ਹੈ।
18-\left(2\sqrt{3}\right)^{2}
18 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
18-2^{2}\left(\sqrt{3}\right)^{2}
\left(2\sqrt{3}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
18-4\left(\sqrt{3}\right)^{2}
2 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 4 ਪ੍ਰਾਪਤ ਕਰੋ।
18-4\times 3
\sqrt{3} ਦਾ ਸਕ੍ਵੇਅਰ 3 ਹੈ।
18-12
12 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
6
6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 18 ਵਿੱਚੋਂ 12 ਨੂੰ ਘਟਾ ਦਿਓ।