ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

240-56x+3x^{2}=112
20-3x ਨੂੰ 12-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
240-56x+3x^{2}-112=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 112 ਨੂੰ ਘਟਾ ਦਿਓ।
128-56x+3x^{2}=0
128 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 240 ਵਿੱਚੋਂ 112 ਨੂੰ ਘਟਾ ਦਿਓ।
3x^{2}-56x+128=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-56\right)±\sqrt{\left(-56\right)^{2}-4\times 3\times 128}}{2\times 3}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 3 ਨੂੰ a ਲਈ, -56 ਨੂੰ b ਲਈ, ਅਤੇ 128 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-56\right)±\sqrt{3136-4\times 3\times 128}}{2\times 3}
-56 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-56\right)±\sqrt{3136-12\times 128}}{2\times 3}
-4 ਨੂੰ 3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-56\right)±\sqrt{3136-1536}}{2\times 3}
-12 ਨੂੰ 128 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-56\right)±\sqrt{1600}}{2\times 3}
3136 ਨੂੰ -1536 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-56\right)±40}{2\times 3}
1600 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{56±40}{2\times 3}
-56 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 56 ਹੈ।
x=\frac{56±40}{6}
2 ਨੂੰ 3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{96}{6}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{56±40}{6} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 56 ਨੂੰ 40 ਵਿੱਚ ਜੋੜੋ।
x=16
96 ਨੂੰ 6 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{16}{6}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{56±40}{6} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 56 ਵਿੱਚੋਂ 40 ਨੂੰ ਘਟਾਓ।
x=\frac{8}{3}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{16}{6} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=16 x=\frac{8}{3}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
240-56x+3x^{2}=112
20-3x ਨੂੰ 12-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
-56x+3x^{2}=112-240
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 240 ਨੂੰ ਘਟਾ ਦਿਓ।
-56x+3x^{2}=-128
-128 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 112 ਵਿੱਚੋਂ 240 ਨੂੰ ਘਟਾ ਦਿਓ।
3x^{2}-56x=-128
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{3x^{2}-56x}{3}=-\frac{128}{3}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}-\frac{56}{3}x=-\frac{128}{3}
3 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 3 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{56}{3}x+\left(-\frac{28}{3}\right)^{2}=-\frac{128}{3}+\left(-\frac{28}{3}\right)^{2}
-\frac{56}{3}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{28}{3} ਨਿਕਲੇ। ਫੇਰ, -\frac{28}{3} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{56}{3}x+\frac{784}{9}=-\frac{128}{3}+\frac{784}{9}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{28}{3} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{56}{3}x+\frac{784}{9}=\frac{400}{9}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{128}{3} ਨੂੰ \frac{784}{9} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{28}{3}\right)^{2}=\frac{400}{9}
ਫੈਕਟਰ x^{2}-\frac{56}{3}x+\frac{784}{9}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{28}{3}\right)^{2}}=\sqrt{\frac{400}{9}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{28}{3}=\frac{20}{3} x-\frac{28}{3}=-\frac{20}{3}
ਸਪਸ਼ਟ ਕਰੋ।
x=16 x=\frac{8}{3}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{28}{3} ਨੂੰ ਜੋੜੋ।