ਮੁਲਾਂਕਣ ਕਰੋ
\frac{16y^{12}}{x^{8}}
ਵਿਸਤਾਰ ਕਰੋ
\frac{16y^{12}}{x^{8}}
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(2x^{-2}y^{3}\right)^{4}
ਐਕਸਪ੍ਰੈਸ਼ਨ ਨੂੰ ਸਰਲ ਬਣਾਉਣ ਲਈ ਐਕਸਪੋਨੈਂਟਾਂ ਦੇ ਨਿਯਮਾਂ ਨੂੰ ਵਰਤੋਂ।
2^{4}\left(x^{-2}\right)^{4}\left(y^{3}\right)^{4}
ਦੋ ਜਾਂ ਵੱਧ ਨੰਬਰਾਂ ਦੇ ਗੁਣਨਫਲ ਨੂੰ ਪਾਵਰ ਤੱਕ ਵਧਾਉਣ ਲਈ, ਹਰ ਨੰਬਰ ਨੂੰ ਪਾਵਰ ਤੱਕ ਵਧਾਓ ਅਤੇ ਉਹਨਾਂ ਦਾ ਗੁਣਨਫਲ ਕੱਢੋ।
16\left(x^{-2}\right)^{4}\left(y^{3}\right)^{4}
2 ਨੂੰ 4 ਪਾਵਰ ਤੱਕ ਵਧਾਓ।
16x^{-2\times 4}y^{3\times 4}
ਕਿਸੇ ਹੋਰ ਨੰਬਰ ਦੀ ਪਾਵਰ ਨੂੰ ਵਧਾਉਣ ਲਈ, ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਗੁਣਾ ਕਰੋ।
16\times \frac{1}{x^{8}}y^{3\times 4}
-2 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
16\times \frac{1}{x^{8}}y^{12}
3 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
\left(2x^{-2}y^{3}\right)^{4}
ਐਕਸਪ੍ਰੈਸ਼ਨ ਨੂੰ ਸਰਲ ਬਣਾਉਣ ਲਈ ਐਕਸਪੋਨੈਂਟਾਂ ਦੇ ਨਿਯਮਾਂ ਨੂੰ ਵਰਤੋਂ।
2^{4}\left(x^{-2}\right)^{4}\left(y^{3}\right)^{4}
ਦੋ ਜਾਂ ਵੱਧ ਨੰਬਰਾਂ ਦੇ ਗੁਣਨਫਲ ਨੂੰ ਪਾਵਰ ਤੱਕ ਵਧਾਉਣ ਲਈ, ਹਰ ਨੰਬਰ ਨੂੰ ਪਾਵਰ ਤੱਕ ਵਧਾਓ ਅਤੇ ਉਹਨਾਂ ਦਾ ਗੁਣਨਫਲ ਕੱਢੋ।
16\left(x^{-2}\right)^{4}\left(y^{3}\right)^{4}
2 ਨੂੰ 4 ਪਾਵਰ ਤੱਕ ਵਧਾਓ।
16x^{-2\times 4}y^{3\times 4}
ਕਿਸੇ ਹੋਰ ਨੰਬਰ ਦੀ ਪਾਵਰ ਨੂੰ ਵਧਾਉਣ ਲਈ, ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਗੁਣਾ ਕਰੋ।
16\times \frac{1}{x^{8}}y^{3\times 4}
-2 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
16\times \frac{1}{x^{8}}y^{12}
3 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}