ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਵਾਸਤਵਿਕ ਭਾਗ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{\left(2+3i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਨੂੰ, ਡੀਨੋਮਿਨੇਟਰ 1-2i ਦੇ ਕੋਮਪਲੈਕਸ ਕੰਜੂਗੇਟ (ਸੰਯੁਜਮੀ) ਨਾਲ ਗੁਣਾ ਕਰੋ।
\frac{\left(2+3i\right)\left(1-2i\right)}{1^{2}-2^{2}i^{2}}
ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\frac{\left(2+3i\right)\left(1-2i\right)}{5}
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ। ਡੀਨੋਮਿਨੇਟਰ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
\frac{2\times 1+2\times \left(-2i\right)+3i\times 1+3\left(-2\right)i^{2}}{5}
ਜਟਿਲ ਸੰਖਿਆਵਾਂ 2+3i ਅਤੇ 1-2i ਨੂੰ ਗੁਣਾ ਕਰੋ, ਜਿਵੇਂ ਤੁਸੀਂ ਬਾਈਨੋਮਿਅਲਸ ਨੂੰ ਗੁਣਾ ਕਰਦੇ ਹੋ।
\frac{2\times 1+2\times \left(-2i\right)+3i\times 1+3\left(-2\right)\left(-1\right)}{5}
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ।
\frac{2-4i+3i+6}{5}
2\times 1+2\times \left(-2i\right)+3i\times 1+3\left(-2\right)\left(-1\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{2+6+\left(-4+3\right)i}{5}
2-4i+3i+6 ਵਿੱਚ ਵਾਸਤਵਿਕ ਅਤੇ ਕਾਲਪਨਿਕ ਹਿੱਸਿਆਂ ਨੂੰ ਮਿਲਾਓ।
\frac{8-i}{5}
2+6+\left(-4+3\right)i ਵਿੱਚ ਜੋੜ ਕਰੋ।
\frac{8}{5}-\frac{1}{5}i
8-i ਨੂੰ 5 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{8}{5}-\frac{1}{5}i ਨਿਕਲੇ।
Re(\frac{\left(2+3i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)})
\frac{2+3i}{1+2i} ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਨੂੰ, ਡੀਨੋਮਿਨੇਟਰ 1-2i ਦੇ ਕੋਮਪਲੈਕਸ ਕੰਜੂਗੇਟ (ਸੰਯੁਜਮੀ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
Re(\frac{\left(2+3i\right)\left(1-2i\right)}{1^{2}-2^{2}i^{2}})
ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
Re(\frac{\left(2+3i\right)\left(1-2i\right)}{5})
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ। ਡੀਨੋਮਿਨੇਟਰ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
Re(\frac{2\times 1+2\times \left(-2i\right)+3i\times 1+3\left(-2\right)i^{2}}{5})
ਜਟਿਲ ਸੰਖਿਆਵਾਂ 2+3i ਅਤੇ 1-2i ਨੂੰ ਗੁਣਾ ਕਰੋ, ਜਿਵੇਂ ਤੁਸੀਂ ਬਾਈਨੋਮਿਅਲਸ ਨੂੰ ਗੁਣਾ ਕਰਦੇ ਹੋ।
Re(\frac{2\times 1+2\times \left(-2i\right)+3i\times 1+3\left(-2\right)\left(-1\right)}{5})
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ।
Re(\frac{2-4i+3i+6}{5})
2\times 1+2\times \left(-2i\right)+3i\times 1+3\left(-2\right)\left(-1\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
Re(\frac{2+6+\left(-4+3\right)i}{5})
2-4i+3i+6 ਵਿੱਚ ਵਾਸਤਵਿਕ ਅਤੇ ਕਾਲਪਨਿਕ ਹਿੱਸਿਆਂ ਨੂੰ ਮਿਲਾਓ।
Re(\frac{8-i}{5})
2+6+\left(-4+3\right)i ਵਿੱਚ ਜੋੜ ਕਰੋ।
Re(\frac{8}{5}-\frac{1}{5}i)
8-i ਨੂੰ 5 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{8}{5}-\frac{1}{5}i ਨਿਕਲੇ।
\frac{8}{5}
\frac{8}{5}-\frac{1}{5}i ਦਾ ਅਸਲੀ ਹਿੱਸਾ \frac{8}{5} ਹੈ।