ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
d ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

4+12d+9d^{2}=\left(2+d\right)\left(2+7d\right)
\left(2+3d\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
4+12d+9d^{2}=4+16d+7d^{2}
2+d ਨੂੰ 2+7d ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
4+12d+9d^{2}-4=16d+7d^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
12d+9d^{2}=16d+7d^{2}
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
12d+9d^{2}-16d=7d^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 16d ਨੂੰ ਘਟਾ ਦਿਓ।
-4d+9d^{2}=7d^{2}
-4d ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12d ਅਤੇ -16d ਨੂੰ ਮਿਲਾਓ।
-4d+9d^{2}-7d^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 7d^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-4d+2d^{2}=0
2d^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9d^{2} ਅਤੇ -7d^{2} ਨੂੰ ਮਿਲਾਓ।
d\left(-4+2d\right)=0
d ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
d=0 d=2
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, d=0 ਅਤੇ -4+2d=0 ਨੂੰ ਹੱਲ ਕਰੋ।
4+12d+9d^{2}=\left(2+d\right)\left(2+7d\right)
\left(2+3d\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
4+12d+9d^{2}=4+16d+7d^{2}
2+d ਨੂੰ 2+7d ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
4+12d+9d^{2}-4=16d+7d^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
12d+9d^{2}=16d+7d^{2}
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
12d+9d^{2}-16d=7d^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 16d ਨੂੰ ਘਟਾ ਦਿਓ।
-4d+9d^{2}=7d^{2}
-4d ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12d ਅਤੇ -16d ਨੂੰ ਮਿਲਾਓ।
-4d+9d^{2}-7d^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 7d^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-4d+2d^{2}=0
2d^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9d^{2} ਅਤੇ -7d^{2} ਨੂੰ ਮਿਲਾਓ।
2d^{2}-4d=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
d=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\times 2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 2 ਨੂੰ a ਲਈ, -4 ਨੂੰ b ਲਈ, ਅਤੇ 0 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
d=\frac{-\left(-4\right)±4}{2\times 2}
\left(-4\right)^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
d=\frac{4±4}{2\times 2}
-4 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 4 ਹੈ।
d=\frac{4±4}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
d=\frac{8}{4}
ਹੁਣ, ਸਮੀਕਰਨ d=\frac{4±4}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 4 ਨੂੰ 4 ਵਿੱਚ ਜੋੜੋ।
d=2
8 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
d=\frac{0}{4}
ਹੁਣ, ਸਮੀਕਰਨ d=\frac{4±4}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 4 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾਓ।
d=0
0 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
d=2 d=0
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
4+12d+9d^{2}=\left(2+d\right)\left(2+7d\right)
\left(2+3d\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
4+12d+9d^{2}=4+16d+7d^{2}
2+d ਨੂੰ 2+7d ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
4+12d+9d^{2}-16d=4+7d^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 16d ਨੂੰ ਘਟਾ ਦਿਓ।
4-4d+9d^{2}=4+7d^{2}
-4d ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12d ਅਤੇ -16d ਨੂੰ ਮਿਲਾਓ।
4-4d+9d^{2}-7d^{2}=4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 7d^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
4-4d+2d^{2}=4
2d^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9d^{2} ਅਤੇ -7d^{2} ਨੂੰ ਮਿਲਾਓ।
-4d+2d^{2}=4-4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
-4d+2d^{2}=0
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
2d^{2}-4d=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{2d^{2}-4d}{2}=\frac{0}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
d^{2}+\left(-\frac{4}{2}\right)d=\frac{0}{2}
2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
d^{2}-2d=\frac{0}{2}
-4 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
d^{2}-2d=0
0 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
d^{2}-2d+1=1
-2, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -1 ਨਿਕਲੇ। ਫੇਰ, -1 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
\left(d-1\right)^{2}=1
ਫੈਕਟਰ d^{2}-2d+1। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(d-1\right)^{2}}=\sqrt{1}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
d-1=1 d-1=-1
ਸਪਸ਼ਟ ਕਰੋ।
d=2 d=0
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 1 ਨੂੰ ਜੋੜੋ।