k ਲਈ ਹਲ ਕਰੋ
k=\frac{x^{2}+x+1}{x^{2}+1}
t ਲਈ ਹਲ ਕਰੋ
t\in \mathrm{R}
k=\frac{x^{2}+x+1}{x^{2}+1}
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
x^{2}-kx^{2}+x+1-k=0t
1-k ਨੂੰ x^{2} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-kx^{2}+x+1-k=0
ਸਿਫਰ ਨਾਲ ਗੁਣਾ ਕੀਤੀ ਰਕਮ ਦਾ ਜਵਾਬ ਸਿਫਰ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।
-kx^{2}+x+1-k=-x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
-kx^{2}+1-k=-x^{2}-x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x ਨੂੰ ਘਟਾ ਦਿਓ।
-kx^{2}-k=-x^{2}-x-1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
\left(-x^{2}-1\right)k=-x^{2}-x-1
k ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\frac{\left(-x^{2}-1\right)k}{-x^{2}-1}=\frac{-x^{2}-x-1}{-x^{2}-1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -x^{2}-1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
k=\frac{-x^{2}-x-1}{-x^{2}-1}
-x^{2}-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -x^{2}-1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
k=\frac{x^{2}+x+1}{x^{2}+1}
-x^{2}-x-1 ਨੂੰ -x^{2}-1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}