ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਵਿਸਤਾਰ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

1-a+\frac{1}{4}a^{2}+8\left(a-\frac{1}{4}\right)^{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
\left(1-\frac{1}{2}a\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
1-a+\frac{1}{4}a^{2}+8\left(a^{2}-\frac{1}{2}a+\frac{1}{16}\right)+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
\left(a-\frac{1}{4}\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
1-a+\frac{1}{4}a^{2}+8a^{2}-4a+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
8 ਨੂੰ a^{2}-\frac{1}{2}a+\frac{1}{16} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
1-a+\frac{33}{4}a^{2}-4a+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
\frac{33}{4}a^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{1}{4}a^{2} ਅਤੇ 8a^{2} ਨੂੰ ਮਿਲਾਓ।
1-5a+\frac{33}{4}a^{2}+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
-5a ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -a ਅਤੇ -4a ਨੂੰ ਮਿਲਾਓ।
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
\frac{3}{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ \frac{1}{2} ਨੂੰ ਜੋੜੋ।
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\left(\frac{3}{2}a\right)^{2}-1+5a
\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}। 1 ਦਾ ਵਰਗ ਕਰੋ।
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\left(\frac{3}{2}\right)^{2}a^{2}-1+5a
\left(\frac{3}{2}a\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\frac{9}{4}a^{2}-1+5a
\frac{3}{2} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ \frac{9}{4} ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{3}{2}-5a+\frac{21}{2}a^{2}-1+5a
\frac{21}{2}a^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{33}{4}a^{2} ਅਤੇ \frac{9}{4}a^{2} ਨੂੰ ਮਿਲਾਓ।
\frac{1}{2}-5a+\frac{21}{2}a^{2}+5a
\frac{1}{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{3}{2} ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{1}{2}+\frac{21}{2}a^{2}
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -5a ਅਤੇ 5a ਨੂੰ ਮਿਲਾਓ।
1-a+\frac{1}{4}a^{2}+8\left(a-\frac{1}{4}\right)^{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
\left(1-\frac{1}{2}a\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
1-a+\frac{1}{4}a^{2}+8\left(a^{2}-\frac{1}{2}a+\frac{1}{16}\right)+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
\left(a-\frac{1}{4}\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
1-a+\frac{1}{4}a^{2}+8a^{2}-4a+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
8 ਨੂੰ a^{2}-\frac{1}{2}a+\frac{1}{16} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
1-a+\frac{33}{4}a^{2}-4a+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
\frac{33}{4}a^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{1}{4}a^{2} ਅਤੇ 8a^{2} ਨੂੰ ਮਿਲਾਓ।
1-5a+\frac{33}{4}a^{2}+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
-5a ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -a ਅਤੇ -4a ਨੂੰ ਮਿਲਾਓ।
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
\frac{3}{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ \frac{1}{2} ਨੂੰ ਜੋੜੋ।
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\left(\frac{3}{2}a\right)^{2}-1+5a
\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}। 1 ਦਾ ਵਰਗ ਕਰੋ।
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\left(\frac{3}{2}\right)^{2}a^{2}-1+5a
\left(\frac{3}{2}a\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\frac{9}{4}a^{2}-1+5a
\frac{3}{2} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ \frac{9}{4} ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{3}{2}-5a+\frac{21}{2}a^{2}-1+5a
\frac{21}{2}a^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{33}{4}a^{2} ਅਤੇ \frac{9}{4}a^{2} ਨੂੰ ਮਿਲਾਓ।
\frac{1}{2}-5a+\frac{21}{2}a^{2}+5a
\frac{1}{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{3}{2} ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{1}{2}+\frac{21}{2}a^{2}
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -5a ਅਤੇ 5a ਨੂੰ ਮਿਲਾਓ।