z ਲਈ ਹਲ ਕਰੋ
z=-3
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(1+i\right)z=2-3i-5
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5 ਨੂੰ ਘਟਾ ਦਿਓ।
\left(1+i\right)z=2-5-3i
5 ਨੂੰ 2-3i ਤੋਂ ਇਹਨਾਂ ਦੇ ਅਨੁਕੂਲ ਵਾਸਤਵਿਕ ਅਤੇ ਕਾਲਪਨਿਕ ਹਿੱਸਿਆਂ ਨੂੰ ਘਟਾ ਕੇ, ਘਟਾਓ।
\left(1+i\right)z=-3-3i
-3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਵਿੱਚੋਂ 5 ਨੂੰ ਘਟਾ ਦਿਓ।
z=\frac{-3-3i}{1+i}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 1+i ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
z=\frac{\left(-3-3i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
\frac{-3-3i}{1+i} ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਨੂੰ, ਡੀਨੋਮਿਨੇਟਰ 1-i ਦੇ ਕੋਮਪਲੈਕਸ ਕੰਜੂਗੇਟ (ਸੰਯੁਜਮੀ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
z=\frac{\left(-3-3i\right)\left(1-i\right)}{1^{2}-i^{2}}
ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
z=\frac{\left(-3-3i\right)\left(1-i\right)}{2}
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ। ਡੀਨੋਮਿਨੇਟਰ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
z=\frac{-3-3\left(-i\right)-3i-3\left(-1\right)i^{2}}{2}
ਜਟਿਲ ਸੰਖਿਆਵਾਂ -3-3i ਅਤੇ 1-i ਨੂੰ ਗੁਣਾ ਕਰੋ, ਜਿਵੇਂ ਤੁਸੀਂ ਬਾਈਨੋਮਿਅਲਸ ਨੂੰ ਗੁਣਾ ਕਰਦੇ ਹੋ।
z=\frac{-3-3\left(-i\right)-3i-3\left(-1\right)\left(-1\right)}{2}
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ।
z=\frac{-3+3i-3i-3}{2}
-3-3\left(-i\right)-3i-3\left(-1\right)\left(-1\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
z=\frac{-3-3+\left(3-3\right)i}{2}
-3+3i-3i-3 ਵਿੱਚ ਵਾਸਤਵਿਕ ਅਤੇ ਕਾਲਪਨਿਕ ਹਿੱਸਿਆਂ ਨੂੰ ਮਿਲਾਓ।
z=\frac{-6}{2}
-3-3+\left(3-3\right)i ਵਿੱਚ ਜੋੜ ਕਰੋ।
z=-3
-6 ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -3 ਨਿਕਲੇ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}